2015-01-02 01:39:31 +00:00
|
|
|
=======================
|
|
|
|
Conditional Expressions
|
|
|
|
=======================
|
|
|
|
|
|
|
|
.. currentmodule:: django.db.models.expressions
|
|
|
|
|
|
|
|
Conditional expressions let you use :keyword:`if` ... :keyword:`elif` ...
|
|
|
|
:keyword:`else` logic within filters, annotations, aggregations, and updates. A
|
|
|
|
conditional expression evaluates a series of conditions for each row of a
|
|
|
|
table and returns the matching result expression. Conditional expressions can
|
|
|
|
also be combined and nested like other :doc:`expressions <expressions>`.
|
|
|
|
|
|
|
|
The conditional expression classes
|
|
|
|
==================================
|
|
|
|
|
|
|
|
We'll be using the following model in the subsequent examples::
|
|
|
|
|
|
|
|
from django.db import models
|
|
|
|
|
2023-02-28 19:53:28 +00:00
|
|
|
|
2015-01-02 01:39:31 +00:00
|
|
|
class Client(models.Model):
|
|
|
|
REGULAR = "R"
|
|
|
|
GOLD = "G"
|
|
|
|
PLATINUM = "P"
|
2019-05-15 12:31:42 +00:00
|
|
|
ACCOUNT_TYPE_CHOICES = [
|
2015-01-02 01:39:31 +00:00
|
|
|
(REGULAR, "Regular"),
|
|
|
|
(GOLD, "Gold"),
|
|
|
|
(PLATINUM, "Platinum"),
|
2019-05-15 12:31:42 +00:00
|
|
|
]
|
2015-01-02 01:39:31 +00:00
|
|
|
name = models.CharField(max_length=50)
|
|
|
|
registered_on = models.DateField()
|
|
|
|
account_type = models.CharField(
|
|
|
|
max_length=1,
|
|
|
|
choices=ACCOUNT_TYPE_CHOICES,
|
|
|
|
default=REGULAR,
|
|
|
|
)
|
|
|
|
|
2016-01-24 21:26:11 +00:00
|
|
|
``When``
|
|
|
|
--------
|
2015-01-02 01:39:31 +00:00
|
|
|
|
2015-02-11 05:38:02 +00:00
|
|
|
.. class:: When(condition=None, then=None, **lookups)
|
2015-01-02 01:39:31 +00:00
|
|
|
|
|
|
|
A ``When()`` object is used to encapsulate a condition and its result for use
|
|
|
|
in the conditional expression. Using a ``When()`` object is similar to using
|
|
|
|
the :meth:`~django.db.models.query.QuerySet.filter` method. The condition can
|
2017-02-27 09:01:52 +00:00
|
|
|
be specified using :ref:`field lookups <field-lookups>`,
|
|
|
|
:class:`~django.db.models.Q` objects, or :class:`~django.db.models.Expression`
|
|
|
|
objects that have an ``output_field`` that is a
|
|
|
|
:class:`~django.db.models.BooleanField`. The result is provided using the
|
|
|
|
``then`` keyword.
|
|
|
|
|
2015-01-02 01:39:31 +00:00
|
|
|
Some examples:
|
2023-02-09 15:48:46 +00:00
|
|
|
|
2015-01-02 01:39:31 +00:00
|
|
|
.. code-block:: pycon
|
|
|
|
|
2018-05-12 17:37:42 +00:00
|
|
|
>>> from django.db.models import F, Q, When
|
2015-01-02 01:39:31 +00:00
|
|
|
>>> # String arguments refer to fields; the following two examples are equivalent:
|
|
|
|
>>> When(account_type=Client.GOLD, then="name")
|
|
|
|
>>> When(account_type=Client.GOLD, then=F("name"))
|
|
|
|
>>> # You can use field lookups in the condition
|
|
|
|
>>> from datetime import date
|
|
|
|
>>> When(
|
|
|
|
... registered_on__gt=date(2014, 1, 1),
|
|
|
|
... registered_on__lt=date(2015, 1, 1),
|
|
|
|
... then="account_type",
|
|
|
|
... )
|
|
|
|
>>> # Complex conditions can be created using Q objects
|
|
|
|
>>> When(Q(name__startswith="John") | Q(name__startswith="Paul"), then="name")
|
2017-02-27 09:01:52 +00:00
|
|
|
>>> # Condition can be created using boolean expressions.
|
|
|
|
>>> from django.db.models import Exists, OuterRef
|
|
|
|
>>> non_unique_account_type = (
|
|
|
|
... Client.objects.filter(
|
|
|
|
... account_type=OuterRef("account_type"),
|
|
|
|
... )
|
|
|
|
... .exclude(pk=OuterRef("pk"))
|
|
|
|
... .values("pk")
|
2023-02-28 19:53:28 +00:00
|
|
|
... )
|
2017-02-27 09:01:52 +00:00
|
|
|
>>> When(Exists(non_unique_account_type), then=Value("non unique"))
|
2021-04-02 17:25:20 +00:00
|
|
|
>>> # Condition can be created using lookup expressions.
|
|
|
|
>>> from django.db.models.lookups import GreaterThan, LessThan
|
|
|
|
>>> When(
|
|
|
|
... GreaterThan(F("registered_on"), date(2014, 1, 1))
|
|
|
|
... & LessThan(F("registered_on"), date(2015, 1, 1)),
|
|
|
|
... then="account_type",
|
|
|
|
... )
|
2015-01-02 01:39:31 +00:00
|
|
|
|
|
|
|
Keep in mind that each of these values can be an expression.
|
|
|
|
|
|
|
|
.. note::
|
|
|
|
|
|
|
|
Since the ``then`` keyword argument is reserved for the result of the
|
|
|
|
``When()``, there is a potential conflict if a
|
|
|
|
:class:`~django.db.models.Model` has a field named ``then``. This can be
|
|
|
|
resolved in two ways:
|
2023-02-09 15:48:46 +00:00
|
|
|
|
2015-01-02 01:39:31 +00:00
|
|
|
.. code-block:: pycon
|
|
|
|
|
2015-02-11 05:38:02 +00:00
|
|
|
>>> When(then__exact=0, then=1)
|
|
|
|
>>> When(Q(then=0), then=1)
|
2015-01-02 01:39:31 +00:00
|
|
|
|
2016-01-24 21:26:11 +00:00
|
|
|
``Case``
|
|
|
|
--------
|
2015-01-02 01:39:31 +00:00
|
|
|
|
|
|
|
.. class:: Case(*cases, **extra)
|
|
|
|
|
|
|
|
A ``Case()`` expression is like the :keyword:`if` ... :keyword:`elif` ...
|
|
|
|
:keyword:`else` statement in ``Python``. Each ``condition`` in the provided
|
|
|
|
``When()`` objects is evaluated in order, until one evaluates to a
|
|
|
|
truthful value. The ``result`` expression from the matching ``When()`` object
|
|
|
|
is returned.
|
|
|
|
|
2019-06-17 14:54:55 +00:00
|
|
|
An example:
|
2023-02-09 15:48:46 +00:00
|
|
|
|
2019-06-17 14:54:55 +00:00
|
|
|
.. code-block:: pycon
|
2015-01-02 01:39:31 +00:00
|
|
|
|
|
|
|
>>>
|
|
|
|
>>> from datetime import date, timedelta
|
2020-06-06 18:34:38 +00:00
|
|
|
>>> from django.db.models import Case, Value, When
|
2015-01-02 01:39:31 +00:00
|
|
|
>>> Client.objects.create(
|
|
|
|
... name="Jane Doe",
|
|
|
|
... account_type=Client.REGULAR,
|
|
|
|
... registered_on=date.today() - timedelta(days=36),
|
|
|
|
... )
|
|
|
|
>>> Client.objects.create(
|
|
|
|
... name="James Smith",
|
|
|
|
... account_type=Client.GOLD,
|
|
|
|
... registered_on=date.today() - timedelta(days=5),
|
|
|
|
... )
|
|
|
|
>>> Client.objects.create(
|
|
|
|
... name="Jack Black",
|
|
|
|
... account_type=Client.PLATINUM,
|
|
|
|
... registered_on=date.today() - timedelta(days=10 * 365),
|
|
|
|
... )
|
|
|
|
>>> # Get the discount for each Client based on the account type
|
|
|
|
>>> Client.objects.annotate(
|
|
|
|
... discount=Case(
|
|
|
|
... When(account_type=Client.GOLD, then=Value("5%")),
|
|
|
|
... When(account_type=Client.PLATINUM, then=Value("10%")),
|
|
|
|
... default=Value("0%"),
|
|
|
|
... ),
|
|
|
|
... ).values_list("name", "discount")
|
2017-07-11 18:15:17 +00:00
|
|
|
<QuerySet [('Jane Doe', '0%'), ('James Smith', '5%'), ('Jack Black', '10%')]>
|
2015-01-02 01:39:31 +00:00
|
|
|
|
|
|
|
``Case()`` accepts any number of ``When()`` objects as individual arguments.
|
|
|
|
Other options are provided using keyword arguments. If none of the conditions
|
|
|
|
evaluate to ``TRUE``, then the expression given with the ``default`` keyword
|
2016-06-15 13:09:59 +00:00
|
|
|
argument is returned. If a ``default`` argument isn't provided, ``None`` is
|
|
|
|
used.
|
2015-01-02 01:39:31 +00:00
|
|
|
|
|
|
|
If we wanted to change our previous query to get the discount based on how long
|
|
|
|
the ``Client`` has been with us, we could do so using lookups:
|
2023-02-09 15:48:46 +00:00
|
|
|
|
2015-01-02 01:39:31 +00:00
|
|
|
.. code-block:: pycon
|
|
|
|
|
|
|
|
>>> a_month_ago = date.today() - timedelta(days=30)
|
|
|
|
>>> a_year_ago = date.today() - timedelta(days=365)
|
|
|
|
>>> # Get the discount for each Client based on the registration date
|
|
|
|
>>> Client.objects.annotate(
|
|
|
|
... discount=Case(
|
|
|
|
... When(registered_on__lte=a_year_ago, then=Value("10%")),
|
|
|
|
... When(registered_on__lte=a_month_ago, then=Value("5%")),
|
|
|
|
... default=Value("0%"),
|
|
|
|
... )
|
|
|
|
... ).values_list("name", "discount")
|
2017-07-11 18:15:17 +00:00
|
|
|
<QuerySet [('Jane Doe', '5%'), ('James Smith', '0%'), ('Jack Black', '10%')]>
|
2015-01-02 01:39:31 +00:00
|
|
|
|
|
|
|
.. note::
|
|
|
|
|
|
|
|
Remember that the conditions are evaluated in order, so in the above
|
|
|
|
example we get the correct result even though the second condition matches
|
|
|
|
both Jane Doe and Jack Black. This works just like an :keyword:`if` ...
|
|
|
|
:keyword:`elif` ... :keyword:`else` statement in ``Python``.
|
|
|
|
|
2016-11-15 11:54:45 +00:00
|
|
|
``Case()`` also works in a ``filter()`` clause. For example, to find gold
|
|
|
|
clients that registered more than a month ago and platinum clients that
|
|
|
|
registered more than a year ago:
|
2023-02-09 15:48:46 +00:00
|
|
|
|
2016-11-15 11:54:45 +00:00
|
|
|
.. code-block:: pycon
|
|
|
|
|
|
|
|
>>> a_month_ago = date.today() - timedelta(days=30)
|
|
|
|
>>> a_year_ago = date.today() - timedelta(days=365)
|
|
|
|
>>> Client.objects.filter(
|
|
|
|
... registered_on__lte=Case(
|
|
|
|
... When(account_type=Client.GOLD, then=a_month_ago),
|
|
|
|
... When(account_type=Client.PLATINUM, then=a_year_ago),
|
|
|
|
... ),
|
|
|
|
... ).values_list("name", "account_type")
|
2017-07-11 18:15:17 +00:00
|
|
|
<QuerySet [('Jack Black', 'P')]>
|
2016-11-15 11:54:45 +00:00
|
|
|
|
2015-01-02 01:39:31 +00:00
|
|
|
Advanced queries
|
|
|
|
================
|
|
|
|
|
2017-02-27 09:01:52 +00:00
|
|
|
Conditional expressions can be used in annotations, aggregations, filters,
|
|
|
|
lookups, and updates. They can also be combined and nested with other
|
|
|
|
expressions. This allows you to make powerful conditional queries.
|
2015-01-02 01:39:31 +00:00
|
|
|
|
|
|
|
Conditional update
|
|
|
|
------------------
|
|
|
|
|
|
|
|
Let's say we want to change the ``account_type`` for our clients to match
|
|
|
|
their registration dates. We can do this using a conditional expression and the
|
|
|
|
:meth:`~django.db.models.query.QuerySet.update` method:
|
2023-02-09 15:48:46 +00:00
|
|
|
|
2015-01-02 01:39:31 +00:00
|
|
|
.. code-block:: pycon
|
|
|
|
|
|
|
|
>>> a_month_ago = date.today() - timedelta(days=30)
|
|
|
|
>>> a_year_ago = date.today() - timedelta(days=365)
|
|
|
|
>>> # Update the account_type for each Client from the registration date
|
|
|
|
>>> Client.objects.update(
|
|
|
|
... account_type=Case(
|
|
|
|
... When(registered_on__lte=a_year_ago, then=Value(Client.PLATINUM)),
|
|
|
|
... When(registered_on__lte=a_month_ago, then=Value(Client.GOLD)),
|
|
|
|
... default=Value(Client.REGULAR),
|
|
|
|
... ),
|
|
|
|
... )
|
|
|
|
>>> Client.objects.values_list("name", "account_type")
|
2017-07-11 18:15:17 +00:00
|
|
|
<QuerySet [('Jane Doe', 'G'), ('James Smith', 'R'), ('Jack Black', 'P')]>
|
2015-01-02 01:39:31 +00:00
|
|
|
|
2017-04-22 15:44:51 +00:00
|
|
|
.. _conditional-aggregation:
|
|
|
|
|
2015-01-02 01:39:31 +00:00
|
|
|
Conditional aggregation
|
|
|
|
-----------------------
|
|
|
|
|
|
|
|
What if we want to find out how many clients there are for each
|
2017-04-22 15:44:51 +00:00
|
|
|
``account_type``? We can use the ``filter`` argument of :ref:`aggregate
|
|
|
|
functions <aggregation-functions>` to achieve this:
|
2023-02-09 15:48:46 +00:00
|
|
|
|
2017-04-22 15:44:51 +00:00
|
|
|
.. code-block:: pycon
|
2015-01-02 01:39:31 +00:00
|
|
|
|
|
|
|
>>> # Create some more Clients first so we can have something to count
|
|
|
|
>>> Client.objects.create(
|
|
|
|
... name="Jean Grey", account_type=Client.REGULAR, registered_on=date.today()
|
|
|
|
... )
|
|
|
|
>>> Client.objects.create(
|
|
|
|
... name="James Bond", account_type=Client.PLATINUM, registered_on=date.today()
|
|
|
|
... )
|
|
|
|
>>> Client.objects.create(
|
|
|
|
... name="Jane Porter", account_type=Client.PLATINUM, registered_on=date.today()
|
|
|
|
... )
|
|
|
|
>>> # Get counts for each value of account_type
|
2017-12-07 13:57:38 +00:00
|
|
|
>>> from django.db.models import Count
|
2015-01-02 01:39:31 +00:00
|
|
|
>>> Client.objects.aggregate(
|
2017-04-22 15:44:51 +00:00
|
|
|
... regular=Count("pk", filter=Q(account_type=Client.REGULAR)),
|
|
|
|
... gold=Count("pk", filter=Q(account_type=Client.GOLD)),
|
|
|
|
... platinum=Count("pk", filter=Q(account_type=Client.PLATINUM)),
|
2015-01-02 01:39:31 +00:00
|
|
|
... )
|
|
|
|
{'regular': 2, 'gold': 1, 'platinum': 3}
|
2017-04-22 15:44:51 +00:00
|
|
|
|
|
|
|
This aggregate produces a query with the SQL 2003 ``FILTER WHERE`` syntax
|
|
|
|
on databases that support it:
|
|
|
|
|
|
|
|
.. code-block:: sql
|
|
|
|
|
|
|
|
SELECT count('id') FILTER (WHERE account_type=1) as regular,
|
|
|
|
count('id') FILTER (WHERE account_type=2) as gold,
|
|
|
|
count('id') FILTER (WHERE account_type=3) as platinum
|
|
|
|
FROM clients;
|
|
|
|
|
|
|
|
On other databases, this is emulated using a ``CASE`` statement:
|
|
|
|
|
|
|
|
.. code-block:: sql
|
|
|
|
|
|
|
|
SELECT count(CASE WHEN account_type=1 THEN id ELSE null) as regular,
|
|
|
|
count(CASE WHEN account_type=2 THEN id ELSE null) as gold,
|
|
|
|
count(CASE WHEN account_type=3 THEN id ELSE null) as platinum
|
|
|
|
FROM clients;
|
|
|
|
|
|
|
|
The two SQL statements are functionally equivalent but the more explicit
|
|
|
|
``FILTER`` may perform better.
|
2017-02-27 09:01:52 +00:00
|
|
|
|
|
|
|
Conditional filter
|
|
|
|
------------------
|
|
|
|
|
|
|
|
When a conditional expression returns a boolean value, it is possible to use it
|
|
|
|
directly in filters. This means that it will not be added to the ``SELECT``
|
|
|
|
columns, but you can still use it to filter results:
|
2023-02-09 15:48:46 +00:00
|
|
|
|
2017-02-27 09:01:52 +00:00
|
|
|
.. code-block:: pycon
|
|
|
|
|
|
|
|
>>> non_unique_account_type = (
|
|
|
|
... Client.objects.filter(
|
|
|
|
... account_type=OuterRef("account_type"),
|
|
|
|
... )
|
|
|
|
... .exclude(pk=OuterRef("pk"))
|
|
|
|
... .values("pk")
|
2023-02-28 19:53:28 +00:00
|
|
|
... )
|
2017-02-27 09:01:52 +00:00
|
|
|
>>> Client.objects.filter(~Exists(non_unique_account_type))
|
|
|
|
|
|
|
|
In SQL terms, that evaluates to:
|
|
|
|
|
|
|
|
.. code-block:: sql
|
|
|
|
|
|
|
|
SELECT ...
|
|
|
|
FROM client c0
|
|
|
|
WHERE NOT EXISTS (
|
|
|
|
SELECT c1.id
|
|
|
|
FROM client c1
|
|
|
|
WHERE c1.account_type = c0.account_type AND NOT c1.id = c0.id
|
|
|
|
)
|