mirror of
https://github.com/django/django.git
synced 2025-01-01 05:56:09 +00:00
2326 lines
90 KiB
Plaintext
2326 lines
90 KiB
Plaintext
===========================
|
|
Testing Django applications
|
|
===========================
|
|
|
|
.. module:: django.test
|
|
:synopsis: Testing tools for Django applications.
|
|
|
|
Automated testing is an extremely useful bug-killing tool for the modern
|
|
Web developer. You can use a collection of tests -- a **test suite** -- to
|
|
solve, or avoid, a number of problems:
|
|
|
|
* When you're writing new code, you can use tests to validate your code
|
|
works as expected.
|
|
|
|
* When you're refactoring or modifying old code, you can use tests to
|
|
ensure your changes haven't affected your application's behavior
|
|
unexpectedly.
|
|
|
|
Testing a Web application is a complex task, because a Web application is made
|
|
of several layers of logic -- from HTTP-level request handling, to form
|
|
validation and processing, to template rendering. With Django's test-execution
|
|
framework and assorted utilities, you can simulate requests, insert test data,
|
|
inspect your application's output and generally verify your code is doing what
|
|
it should be doing.
|
|
|
|
The best part is, it's really easy.
|
|
|
|
This document is split into two primary sections. First, we explain how to
|
|
write tests with Django. Then, we explain how to run them.
|
|
|
|
Writing tests
|
|
=============
|
|
|
|
There are two primary ways to write tests with Django, corresponding to the
|
|
two test frameworks that ship in the Python standard library. The two
|
|
frameworks are:
|
|
|
|
* **Unit tests** -- tests that are expressed as methods on a Python class
|
|
that subclasses :class:`unittest.TestCase` or Django's customized
|
|
:class:`TestCase`. For example::
|
|
|
|
import unittest
|
|
|
|
class MyFuncTestCase(unittest.TestCase):
|
|
def testBasic(self):
|
|
a = ['larry', 'curly', 'moe']
|
|
self.assertEqual(my_func(a, 0), 'larry')
|
|
self.assertEqual(my_func(a, 1), 'curly')
|
|
|
|
* **Doctests** -- tests that are embedded in your functions' docstrings and
|
|
are written in a way that emulates a session of the Python interactive
|
|
interpreter. For example::
|
|
|
|
def my_func(a_list, idx):
|
|
"""
|
|
>>> a = ['larry', 'curly', 'moe']
|
|
>>> my_func(a, 0)
|
|
'larry'
|
|
>>> my_func(a, 1)
|
|
'curly'
|
|
"""
|
|
return a_list[idx]
|
|
|
|
We'll discuss choosing the appropriate test framework later, however, most
|
|
experienced developers prefer unit tests. You can also use any *other* Python
|
|
test framework, as we'll explain in a bit.
|
|
|
|
Writing unit tests
|
|
------------------
|
|
|
|
Django's unit tests use a Python standard library module: :mod:`unittest`. This
|
|
module defines tests in class-based approach.
|
|
|
|
.. admonition:: unittest2
|
|
|
|
Python 2.7 introduced some major changes to the unittest library,
|
|
adding some extremely useful features. To ensure that every Django
|
|
project can benefit from these new features, Django ships with a
|
|
copy of unittest2_, a copy of the Python 2.7 unittest library,
|
|
backported for Python 2.5 compatibility.
|
|
|
|
To access this library, Django provides the
|
|
:mod:`django.utils.unittest` module alias. If you are using Python
|
|
2.7, or you have installed unittest2 locally, Django will map the
|
|
alias to the installed version of the unittest library. Otherwise,
|
|
Django will use its own bundled version of unittest2.
|
|
|
|
To use this alias, simply use::
|
|
|
|
from django.utils import unittest
|
|
|
|
wherever you would have historically used::
|
|
|
|
import unittest
|
|
|
|
If you want to continue to use the base unittest library, you can --
|
|
you just won't get any of the nice new unittest2 features.
|
|
|
|
.. _unittest2: http://pypi.python.org/pypi/unittest2
|
|
|
|
For a given Django application, the test runner looks for unit tests in two
|
|
places:
|
|
|
|
* The ``models.py`` file. The test runner looks for any subclass of
|
|
:class:`unittest.TestCase` in this module.
|
|
|
|
* A file called ``tests.py`` in the application directory -- i.e., the
|
|
directory that holds ``models.py``. Again, the test runner looks for any
|
|
subclass of :class:`unittest.TestCase` in this module.
|
|
|
|
Here is an example :class:`unittest.TestCase` subclass::
|
|
|
|
from django.utils import unittest
|
|
from myapp.models import Animal
|
|
|
|
class AnimalTestCase(unittest.TestCase):
|
|
def setUp(self):
|
|
self.lion = Animal.objects.create(name="lion", sound="roar")
|
|
self.cat = Animal.objects.create(name="cat", sound="meow")
|
|
|
|
def test_animals_can_speak(self):
|
|
"""Animals that can speak are correctly identified"""
|
|
self.assertEqual(self.lion.speak(), 'The lion says "roar"')
|
|
self.assertEqual(self.cat.speak(), 'The cat says "meow"')
|
|
|
|
When you :ref:`run your tests <running-tests>`, the default behavior of the test
|
|
utility is to find all the test cases (that is, subclasses of
|
|
:class:`unittest.TestCase`) in ``models.py`` and ``tests.py``, automatically
|
|
build a test suite out of those test cases, and run that suite.
|
|
|
|
There is a second way to define the test suite for a module: if you define a
|
|
function called ``suite()`` in either ``models.py`` or ``tests.py``, the
|
|
Django test runner will use that function to construct the test suite for that
|
|
module. This follows the `suggested organization`_ for unit tests. See the
|
|
Python documentation for more details on how to construct a complex test
|
|
suite.
|
|
|
|
For more details about :mod:`unittest`, see the Python documentation.
|
|
|
|
.. _suggested organization: http://docs.python.org/library/unittest.html#organizing-tests
|
|
|
|
Writing doctests
|
|
----------------
|
|
|
|
Doctests use Python's standard :mod:`doctest` module, which searches your
|
|
docstrings for statements that resemble a session of the Python interactive
|
|
interpreter. A full explanation of how :mod:`doctest` works is out of the scope
|
|
of this document; read Python's official documentation for the details.
|
|
|
|
.. admonition:: What's a **docstring**?
|
|
|
|
A good explanation of docstrings (and some guidelines for using them
|
|
effectively) can be found in :pep:`257`:
|
|
|
|
A docstring is a string literal that occurs as the first statement in
|
|
a module, function, class, or method definition. Such a docstring
|
|
becomes the ``__doc__`` special attribute of that object.
|
|
|
|
For example, this function has a docstring that describes what it does::
|
|
|
|
def add_two(num):
|
|
"Return the result of adding two to the provided number."
|
|
return num + 2
|
|
|
|
Because tests often make great documentation, putting tests directly in
|
|
your docstrings is an effective way to document *and* test your code.
|
|
|
|
As with unit tests, for a given Django application, the test runner looks for
|
|
doctests in two places:
|
|
|
|
* The ``models.py`` file. You can define module-level doctests and/or a
|
|
doctest for individual models. It's common practice to put
|
|
application-level doctests in the module docstring and model-level
|
|
doctests in the model docstrings.
|
|
|
|
* A file called ``tests.py`` in the application directory -- i.e., the
|
|
directory that holds ``models.py``. This file is a hook for any and all
|
|
doctests you want to write that aren't necessarily related to models.
|
|
|
|
This example doctest is equivalent to the example given in the unittest section
|
|
above::
|
|
|
|
# models.py
|
|
|
|
from django.db import models
|
|
|
|
class Animal(models.Model):
|
|
"""
|
|
An animal that knows how to make noise
|
|
|
|
# Create some animals
|
|
>>> lion = Animal.objects.create(name="lion", sound="roar")
|
|
>>> cat = Animal.objects.create(name="cat", sound="meow")
|
|
|
|
# Make 'em speak
|
|
>>> lion.speak()
|
|
'The lion says "roar"'
|
|
>>> cat.speak()
|
|
'The cat says "meow"'
|
|
"""
|
|
name = models.CharField(max_length=20)
|
|
sound = models.CharField(max_length=20)
|
|
|
|
def speak(self):
|
|
return 'The %s says "%s"' % (self.name, self.sound)
|
|
|
|
When you :ref:`run your tests <running-tests>`, the test runner will find this
|
|
docstring, notice that portions of it look like an interactive Python session,
|
|
and execute those lines while checking that the results match.
|
|
|
|
In the case of model tests, note that the test runner takes care of creating
|
|
its own test database. That is, any test that accesses a database -- by
|
|
creating and saving model instances, for example -- will not affect your
|
|
production database. However, the database is not refreshed between doctests,
|
|
so if your doctest requires a certain state you should consider flushing the
|
|
database or loading a fixture. (See the section on fixtures, below, for more
|
|
on this.) Note that to use this feature, the database user Django is connecting
|
|
as must have ``CREATE DATABASE`` rights.
|
|
|
|
For more details about :mod:`doctest`, see the Python documentation.
|
|
|
|
Which should I use?
|
|
-------------------
|
|
|
|
Because Django supports both of the standard Python test frameworks, it's up to
|
|
you and your tastes to decide which one to use. You can even decide to use
|
|
*both*.
|
|
|
|
For developers new to testing, however, this choice can seem confusing. Here,
|
|
then, are a few key differences to help you decide which approach is right for
|
|
you:
|
|
|
|
* If you've been using Python for a while, :mod:`doctest` will probably feel
|
|
more "pythonic". It's designed to make writing tests as easy as possible,
|
|
so it requires no overhead of writing classes or methods. You simply put
|
|
tests in docstrings. This has the added advantage of serving as
|
|
documentation (and correct documentation, at that!). However, while
|
|
doctests are good for some simple example code, they are not very good if
|
|
you want to produce either high quality, comprehensive tests or high
|
|
quality documentation. Test failures are often difficult to debug
|
|
as it can be unclear exactly why the test failed. Thus, doctests should
|
|
generally be avoided and used primarily for documentation examples only.
|
|
|
|
* The :mod:`unittest` framework will probably feel very familiar to
|
|
developers coming from Java. :mod:`unittest` is inspired by Java's JUnit,
|
|
so you'll feel at home with this method if you've used JUnit or any test
|
|
framework inspired by JUnit.
|
|
|
|
* If you need to write a bunch of tests that share similar code, then
|
|
you'll appreciate the :mod:`unittest` framework's organization around
|
|
classes and methods. This makes it easy to abstract common tasks into
|
|
common methods. The framework also supports explicit setup and/or cleanup
|
|
routines, which give you a high level of control over the environment
|
|
in which your test cases are run.
|
|
|
|
* If you're writing tests for Django itself, you should use :mod:`unittest`.
|
|
|
|
.. _running-tests:
|
|
|
|
Running tests
|
|
=============
|
|
|
|
Once you've written tests, run them using the :djadmin:`test` command of
|
|
your project's ``manage.py`` utility::
|
|
|
|
$ ./manage.py test
|
|
|
|
By default, this will run every test in every application in
|
|
:setting:`INSTALLED_APPS`. If you only want to run tests for a particular
|
|
application, add the application name to the command line. For example, if your
|
|
:setting:`INSTALLED_APPS` contains ``'myproject.polls'`` and
|
|
``'myproject.animals'``, you can run the ``myproject.animals`` unit tests alone
|
|
with this command::
|
|
|
|
$ ./manage.py test animals
|
|
|
|
Note that we used ``animals``, not ``myproject.animals``.
|
|
|
|
You can be even *more* specific by naming an individual test case. To
|
|
run a single test case in an application (for example, the
|
|
``AnimalTestCase`` described in the "Writing unit tests" section), add
|
|
the name of the test case to the label on the command line::
|
|
|
|
$ ./manage.py test animals.AnimalTestCase
|
|
|
|
And it gets even more granular than that! To run a *single* test
|
|
method inside a test case, add the name of the test method to the
|
|
label::
|
|
|
|
$ ./manage.py test animals.AnimalTestCase.test_animals_can_speak
|
|
|
|
You can use the same rules if you're using doctests. Django will use the
|
|
test label as a path to the test method or class that you want to run.
|
|
If your ``models.py`` or ``tests.py`` has a function with a doctest, or
|
|
class with a class-level doctest, you can invoke that test by appending the
|
|
name of the test method or class to the label::
|
|
|
|
$ ./manage.py test animals.classify
|
|
|
|
If you want to run the doctest for a specific method in a class, add the
|
|
name of the method to the label::
|
|
|
|
$ ./manage.py test animals.Classifier.run
|
|
|
|
If you're using a ``__test__`` dictionary to specify doctests for a
|
|
module, Django will use the label as a key in the ``__test__`` dictionary
|
|
for defined in ``models.py`` and ``tests.py``.
|
|
|
|
If you press ``Ctrl-C`` while the tests are running, the test runner will
|
|
wait for the currently running test to complete and then exit gracefully.
|
|
During a graceful exit the test runner will output details of any test
|
|
failures, report on how many tests were run and how many errors and failures
|
|
were encountered, and destroy any test databases as usual. Thus pressing
|
|
``Ctrl-C`` can be very useful if you forget to pass the :djadminopt:`--failfast`
|
|
option, notice that some tests are unexpectedly failing, and want to get details
|
|
on the failures without waiting for the full test run to complete.
|
|
|
|
If you do not want to wait for the currently running test to finish, you
|
|
can press ``Ctrl-C`` a second time and the test run will halt immediately,
|
|
but not gracefully. No details of the tests run before the interruption will
|
|
be reported, and any test databases created by the run will not be destroyed.
|
|
|
|
.. admonition:: Test with warnings enabled
|
|
|
|
It's a good idea to run your tests with Python warnings enabled:
|
|
``python -Wall manage.py test``. The ``-Wall`` flag tells Python to
|
|
display deprecation warnings. Django, like many other Python libraries,
|
|
uses these warnings to flag when features are going away. It also might
|
|
flag areas in your code that aren't strictly wrong but could benefit
|
|
from a better implementation.
|
|
|
|
Running tests outside the test runner
|
|
-------------------------------------
|
|
|
|
If you want to run tests outside of ``./manage.py test`` -- for example,
|
|
from a shell prompt -- you will need to set up the test
|
|
environment first. Django provides a convenience method to do this::
|
|
|
|
>>> from django.test.utils import setup_test_environment
|
|
>>> setup_test_environment()
|
|
|
|
This convenience method sets up the test database, and puts other
|
|
Django features into modes that allow for repeatable testing.
|
|
|
|
The call to :meth:`~django.test.utils.setup_test_environment` is made
|
|
automatically as part of the setup of `./manage.py test`. You only
|
|
need to manually invoke this method if you're not using running your
|
|
tests via Django's test runner.
|
|
|
|
The test database
|
|
-----------------
|
|
|
|
Tests that require a database (namely, model tests) will not use your "real"
|
|
(production) database. Separate, blank databases are created for the tests.
|
|
|
|
Regardless of whether the tests pass or fail, the test databases are destroyed
|
|
when all the tests have been executed.
|
|
|
|
By default the test databases get their names by prepending ``test_``
|
|
to the value of the :setting:`NAME` settings for the databases
|
|
defined in :setting:`DATABASES`. When using the SQLite database engine
|
|
the tests will by default use an in-memory database (i.e., the
|
|
database will be created in memory, bypassing the filesystem
|
|
entirely!). If you want to use a different database name, specify
|
|
:setting:`TEST_NAME` in the dictionary for any given database in
|
|
:setting:`DATABASES`.
|
|
|
|
Aside from using a separate database, the test runner will otherwise
|
|
use all of the same database settings you have in your settings file:
|
|
:setting:`ENGINE`, :setting:`USER`, :setting:`HOST`, etc. The test
|
|
database is created by the user specified by :setting:`USER`, so you'll need
|
|
to make sure that the given user account has sufficient privileges to
|
|
create a new database on the system.
|
|
|
|
For fine-grained control over the character encoding of your test
|
|
database, use the :setting:`TEST_CHARSET` option. If you're using
|
|
MySQL, you can also use the :setting:`TEST_COLLATION` option to
|
|
control the particular collation used by the test database. See the
|
|
:doc:`settings documentation </ref/settings>` for details of these
|
|
advanced settings.
|
|
|
|
.. _topics-testing-masterslave:
|
|
|
|
Testing master/slave configurations
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
If you're testing a multiple database configuration with master/slave
|
|
replication, this strategy of creating test databases poses a problem.
|
|
When the test databases are created, there won't be any replication,
|
|
and as a result, data created on the master won't be seen on the
|
|
slave.
|
|
|
|
To compensate for this, Django allows you to define that a database is
|
|
a *test mirror*. Consider the following (simplified) example database
|
|
configuration::
|
|
|
|
DATABASES = {
|
|
'default': {
|
|
'ENGINE': 'django.db.backends.mysql',
|
|
'NAME': 'myproject',
|
|
'HOST': 'dbmaster',
|
|
# ... plus some other settings
|
|
},
|
|
'slave': {
|
|
'ENGINE': 'django.db.backends.mysql',
|
|
'NAME': 'myproject',
|
|
'HOST': 'dbslave',
|
|
'TEST_MIRROR': 'default'
|
|
# ... plus some other settings
|
|
}
|
|
}
|
|
|
|
In this setup, we have two database servers: ``dbmaster``, described
|
|
by the database alias ``default``, and ``dbslave`` described by the
|
|
alias ``slave``. As you might expect, ``dbslave`` has been configured
|
|
by the database administrator as a read slave of ``dbmaster``, so in
|
|
normal activity, any write to ``default`` will appear on ``slave``.
|
|
|
|
If Django created two independent test databases, this would break any
|
|
tests that expected replication to occur. However, the ``slave``
|
|
database has been configured as a test mirror (using the
|
|
:setting:`TEST_MIRROR` setting), indicating that under testing,
|
|
``slave`` should be treated as a mirror of ``default``.
|
|
|
|
When the test environment is configured, a test version of ``slave``
|
|
will *not* be created. Instead the connection to ``slave``
|
|
will be redirected to point at ``default``. As a result, writes to
|
|
``default`` will appear on ``slave`` -- but because they are actually
|
|
the same database, not because there is data replication between the
|
|
two databases.
|
|
|
|
.. _topics-testing-creation-dependencies:
|
|
|
|
Controlling creation order for test databases
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
By default, Django will always create the ``default`` database first.
|
|
However, no guarantees are made on the creation order of any other
|
|
databases in your test setup.
|
|
|
|
If your database configuration requires a specific creation order, you
|
|
can specify the dependencies that exist using the
|
|
:setting:`TEST_DEPENDENCIES` setting. Consider the following
|
|
(simplified) example database configuration::
|
|
|
|
DATABASES = {
|
|
'default': {
|
|
# ... db settings
|
|
'TEST_DEPENDENCIES': ['diamonds']
|
|
},
|
|
'diamonds': {
|
|
# ... db settings
|
|
},
|
|
'clubs': {
|
|
# ... db settings
|
|
'TEST_DEPENDENCIES': ['diamonds']
|
|
},
|
|
'spades': {
|
|
# ... db settings
|
|
'TEST_DEPENDENCIES': ['diamonds','hearts']
|
|
},
|
|
'hearts': {
|
|
# ... db settings
|
|
'TEST_DEPENDENCIES': ['diamonds','clubs']
|
|
}
|
|
}
|
|
|
|
Under this configuration, the ``diamonds`` database will be created first,
|
|
as it is the only database alias without dependencies. The ``default`` and
|
|
``clubs`` alias will be created next (although the order of creation of this
|
|
pair is not guaranteed); then ``hearts``; and finally ``spades``.
|
|
|
|
If there are any circular dependencies in the
|
|
:setting:`TEST_DEPENDENCIES` definition, an ``ImproperlyConfigured``
|
|
exception will be raised.
|
|
|
|
Order in which tests are executed
|
|
---------------------------------
|
|
|
|
In order to guarantee that all ``TestCase`` code starts with a clean database,
|
|
the Django test runner reorders tests in the following way:
|
|
|
|
* First, all unittests (including :class:`unittest.TestCase`,
|
|
:class:`~django.test.SimpleTestCase`, :class:`~django.test.TestCase` and
|
|
:class:`~django.test.TransactionTestCase`) are run with no particular ordering
|
|
guaranteed nor enforced among them.
|
|
|
|
* Then any other tests (e.g. doctests) that may alter the database without
|
|
restoring it to its original state are run.
|
|
|
|
.. versionchanged:: 1.5
|
|
Before Django 1.5, the only guarantee was that
|
|
:class:`~django.test.TestCase` tests were always ran first, before any other
|
|
tests.
|
|
|
|
.. note::
|
|
|
|
The new ordering of tests may reveal unexpected dependencies on test case
|
|
ordering. This is the case with doctests that relied on state left in the
|
|
database by a given :class:`~django.test.TransactionTestCase` test, they
|
|
must be updated to be able to run independently.
|
|
|
|
Other test conditions
|
|
---------------------
|
|
|
|
Regardless of the value of the :setting:`DEBUG` setting in your configuration
|
|
file, all Django tests run with :setting:`DEBUG`\=False. This is to ensure that
|
|
the observed output of your code matches what will be seen in a production
|
|
setting.
|
|
|
|
Caches are not cleared after each test, and running "manage.py test fooapp" can
|
|
insert data from the tests into the cache of a live system if you run your
|
|
tests in production because, unlike databases, a separate "test cache" is not
|
|
used. This behavior `may change`_ in the future.
|
|
|
|
.. _may change: https://code.djangoproject.com/ticket/11505
|
|
|
|
Understanding the test output
|
|
-----------------------------
|
|
|
|
When you run your tests, you'll see a number of messages as the test runner
|
|
prepares itself. You can control the level of detail of these messages with the
|
|
``verbosity`` option on the command line::
|
|
|
|
Creating test database...
|
|
Creating table myapp_animal
|
|
Creating table myapp_mineral
|
|
Loading 'initial_data' fixtures...
|
|
No fixtures found.
|
|
|
|
This tells you that the test runner is creating a test database, as described
|
|
in the previous section.
|
|
|
|
Once the test database has been created, Django will run your tests.
|
|
If everything goes well, you'll see something like this::
|
|
|
|
----------------------------------------------------------------------
|
|
Ran 22 tests in 0.221s
|
|
|
|
OK
|
|
|
|
If there are test failures, however, you'll see full details about which tests
|
|
failed::
|
|
|
|
======================================================================
|
|
FAIL: Doctest: ellington.core.throttle.models
|
|
----------------------------------------------------------------------
|
|
Traceback (most recent call last):
|
|
File "/dev/django/test/doctest.py", line 2153, in runTest
|
|
raise self.failureException(self.format_failure(new.getvalue()))
|
|
AssertionError: Failed doctest test for myapp.models
|
|
File "/dev/myapp/models.py", line 0, in models
|
|
|
|
----------------------------------------------------------------------
|
|
File "/dev/myapp/models.py", line 14, in myapp.models
|
|
Failed example:
|
|
throttle.check("actor A", "action one", limit=2, hours=1)
|
|
Expected:
|
|
True
|
|
Got:
|
|
False
|
|
|
|
----------------------------------------------------------------------
|
|
Ran 2 tests in 0.048s
|
|
|
|
FAILED (failures=1)
|
|
|
|
A full explanation of this error output is beyond the scope of this document,
|
|
but it's pretty intuitive. You can consult the documentation of Python's
|
|
:mod:`unittest` library for details.
|
|
|
|
Note that the return code for the test-runner script is 1 for any number of
|
|
failed and erroneous tests. If all the tests pass, the return code is 0. This
|
|
feature is useful if you're using the test-runner script in a shell script and
|
|
need to test for success or failure at that level.
|
|
|
|
Speeding up the tests
|
|
---------------------
|
|
|
|
In recent versions of Django, the default password hasher is rather slow by
|
|
design. If during your tests you are authenticating many users, you may want
|
|
to use a custom settings file and set the :setting:`PASSWORD_HASHERS` setting
|
|
to a faster hashing algorithm::
|
|
|
|
PASSWORD_HASHERS = (
|
|
'django.contrib.auth.hashers.MD5PasswordHasher',
|
|
)
|
|
|
|
Don't forget to also include in :setting:`PASSWORD_HASHERS` any hashing
|
|
algorithm used in fixtures, if any.
|
|
|
|
.. _topics-testing-code-coverage:
|
|
|
|
Integration with coverage.py
|
|
----------------------------
|
|
|
|
Code coverage describes how much source code has been tested. It shows which
|
|
parts of your code are being exercised by tests and which are not. It's an
|
|
important part of testing applications, so it's strongly recommended to check
|
|
the coverage of your tests.
|
|
|
|
Django can be easily integrated with `coverage.py`_, a tool for measuring code
|
|
coverage of Python programs. First, `install coverage.py`_. Next, run the
|
|
following from your project folder containing ``manage.py``::
|
|
|
|
coverage run --source='.' manage.py test myapp
|
|
|
|
This runs your tests and collects coverage data of the executed files in your
|
|
project. You can see a report of this data by typing following command::
|
|
|
|
coverage report
|
|
|
|
Note that some Django code was executed while running tests, but it is not
|
|
listed here because of the ``source`` flag passed to the previous command.
|
|
|
|
For more options like annotated HTML listings detailing missed lines, see the
|
|
`coverage.py`_ docs.
|
|
|
|
.. _coverage.py: http://nedbatchelder.com/code/coverage/
|
|
.. _install coverage.py: http://pypi.python.org/pypi/coverage
|
|
|
|
Testing tools
|
|
=============
|
|
|
|
Django provides a small set of tools that come in handy when writing tests.
|
|
|
|
.. _test-client:
|
|
|
|
The test client
|
|
---------------
|
|
|
|
.. module:: django.test.client
|
|
:synopsis: Django's test client.
|
|
|
|
The test client is a Python class that acts as a dummy Web browser, allowing
|
|
you to test your views and interact with your Django-powered application
|
|
programmatically.
|
|
|
|
Some of the things you can do with the test client are:
|
|
|
|
* Simulate GET and POST requests on a URL and observe the response --
|
|
everything from low-level HTTP (result headers and status codes) to
|
|
page content.
|
|
|
|
* Test that the correct view is executed for a given URL.
|
|
|
|
* Test that a given request is rendered by a given Django template, with
|
|
a template context that contains certain values.
|
|
|
|
Note that the test client is not intended to be a replacement for Selenium_ or
|
|
other "in-browser" frameworks. Django's test client has a different focus. In
|
|
short:
|
|
|
|
* Use Django's test client to establish that the correct view is being
|
|
called and that the view is collecting the correct context data.
|
|
|
|
* Use in-browser frameworks like Selenium_ to test *rendered* HTML and the
|
|
*behavior* of Web pages, namely JavaScript functionality. Django also
|
|
provides special support for those frameworks; see the section on
|
|
:class:`~django.test.LiveServerTestCase` for more details.
|
|
|
|
A comprehensive test suite should use a combination of both test types.
|
|
|
|
Overview and a quick example
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
To use the test client, instantiate ``django.test.client.Client`` and retrieve
|
|
Web pages::
|
|
|
|
>>> from django.test.client import Client
|
|
>>> c = Client()
|
|
>>> response = c.post('/login/', {'username': 'john', 'password': 'smith'})
|
|
>>> response.status_code
|
|
200
|
|
>>> response = c.get('/customer/details/')
|
|
>>> response.content
|
|
'<!DOCTYPE html...'
|
|
|
|
As this example suggests, you can instantiate ``Client`` from within a session
|
|
of the Python interactive interpreter.
|
|
|
|
Note a few important things about how the test client works:
|
|
|
|
* The test client does *not* require the Web server to be running. In fact,
|
|
it will run just fine with no Web server running at all! That's because
|
|
it avoids the overhead of HTTP and deals directly with the Django
|
|
framework. This helps make the unit tests run quickly.
|
|
|
|
* When retrieving pages, remember to specify the *path* of the URL, not the
|
|
whole domain. For example, this is correct::
|
|
|
|
>>> c.get('/login/')
|
|
|
|
This is incorrect::
|
|
|
|
>>> c.get('http://www.example.com/login/')
|
|
|
|
The test client is not capable of retrieving Web pages that are not
|
|
powered by your Django project. If you need to retrieve other Web pages,
|
|
use a Python standard library module such as :mod:`urllib` or
|
|
:mod:`urllib2`.
|
|
|
|
* To resolve URLs, the test client uses whatever URLconf is pointed-to by
|
|
your :setting:`ROOT_URLCONF` setting.
|
|
|
|
* Although the above example would work in the Python interactive
|
|
interpreter, some of the test client's functionality, notably the
|
|
template-related functionality, is only available *while tests are
|
|
running*.
|
|
|
|
The reason for this is that Django's test runner performs a bit of black
|
|
magic in order to determine which template was loaded by a given view.
|
|
This black magic (essentially a patching of Django's template system in
|
|
memory) only happens during test running.
|
|
|
|
* By default, the test client will disable any CSRF checks
|
|
performed by your site.
|
|
|
|
If, for some reason, you *want* the test client to perform CSRF
|
|
checks, you can create an instance of the test client that
|
|
enforces CSRF checks. To do this, pass in the
|
|
``enforce_csrf_checks`` argument when you construct your
|
|
client::
|
|
|
|
>>> from django.test import Client
|
|
>>> csrf_client = Client(enforce_csrf_checks=True)
|
|
|
|
Making requests
|
|
~~~~~~~~~~~~~~~
|
|
|
|
Use the ``django.test.client.Client`` class to make requests.
|
|
|
|
.. class:: Client(enforce_csrf_checks=False, **defaults)
|
|
|
|
It requires no arguments at time of construction. However, you can use
|
|
keywords arguments to specify some default headers. For example, this will
|
|
send a ``User-Agent`` HTTP header in each request::
|
|
|
|
>>> c = Client(HTTP_USER_AGENT='Mozilla/5.0')
|
|
|
|
The values from the ``extra`` keywords arguments passed to
|
|
:meth:`~django.test.client.Client.get()`,
|
|
:meth:`~django.test.client.Client.post()`, etc. have precedence over
|
|
the defaults passed to the class constructor.
|
|
|
|
The ``enforce_csrf_checks`` argument can be used to test CSRF
|
|
protection (see above).
|
|
|
|
Once you have a ``Client`` instance, you can call any of the following
|
|
methods:
|
|
|
|
.. method:: Client.get(path, data={}, follow=False, **extra)
|
|
|
|
|
|
Makes a GET request on the provided ``path`` and returns a ``Response``
|
|
object, which is documented below.
|
|
|
|
The key-value pairs in the ``data`` dictionary are used to create a GET
|
|
data payload. For example::
|
|
|
|
>>> c = Client()
|
|
>>> c.get('/customers/details/', {'name': 'fred', 'age': 7})
|
|
|
|
...will result in the evaluation of a GET request equivalent to::
|
|
|
|
/customers/details/?name=fred&age=7
|
|
|
|
The ``extra`` keyword arguments parameter can be used to specify
|
|
headers to be sent in the request. For example::
|
|
|
|
>>> c = Client()
|
|
>>> c.get('/customers/details/', {'name': 'fred', 'age': 7},
|
|
... HTTP_X_REQUESTED_WITH='XMLHttpRequest')
|
|
|
|
...will send the HTTP header ``HTTP_X_REQUESTED_WITH`` to the
|
|
details view, which is a good way to test code paths that use the
|
|
:meth:`django.http.HttpRequest.is_ajax()` method.
|
|
|
|
.. admonition:: CGI specification
|
|
|
|
The headers sent via ``**extra`` should follow CGI_ specification.
|
|
For example, emulating a different "Host" header as sent in the
|
|
HTTP request from the browser to the server should be passed
|
|
as ``HTTP_HOST``.
|
|
|
|
.. _CGI: http://www.w3.org/CGI/
|
|
|
|
If you already have the GET arguments in URL-encoded form, you can
|
|
use that encoding instead of using the data argument. For example,
|
|
the previous GET request could also be posed as::
|
|
|
|
>>> c = Client()
|
|
>>> c.get('/customers/details/?name=fred&age=7')
|
|
|
|
If you provide a URL with both an encoded GET data and a data argument,
|
|
the data argument will take precedence.
|
|
|
|
If you set ``follow`` to ``True`` the client will follow any redirects
|
|
and a ``redirect_chain`` attribute will be set in the response object
|
|
containing tuples of the intermediate urls and status codes.
|
|
|
|
If you had a URL ``/redirect_me/`` that redirected to ``/next/``, that
|
|
redirected to ``/final/``, this is what you'd see::
|
|
|
|
>>> response = c.get('/redirect_me/', follow=True)
|
|
>>> response.redirect_chain
|
|
[(u'http://testserver/next/', 302), (u'http://testserver/final/', 302)]
|
|
|
|
.. method:: Client.post(path, data={}, content_type=MULTIPART_CONTENT, follow=False, **extra)
|
|
|
|
Makes a POST request on the provided ``path`` and returns a
|
|
``Response`` object, which is documented below.
|
|
|
|
The key-value pairs in the ``data`` dictionary are used to submit POST
|
|
data. For example::
|
|
|
|
>>> c = Client()
|
|
>>> c.post('/login/', {'name': 'fred', 'passwd': 'secret'})
|
|
|
|
...will result in the evaluation of a POST request to this URL::
|
|
|
|
/login/
|
|
|
|
...with this POST data::
|
|
|
|
name=fred&passwd=secret
|
|
|
|
If you provide ``content_type`` (e.g. :mimetype:`text/xml` for an XML
|
|
payload), the contents of ``data`` will be sent as-is in the POST
|
|
request, using ``content_type`` in the HTTP ``Content-Type`` header.
|
|
|
|
If you don't provide a value for ``content_type``, the values in
|
|
``data`` will be transmitted with a content type of
|
|
:mimetype:`multipart/form-data`. In this case, the key-value pairs in
|
|
``data`` will be encoded as a multipart message and used to create the
|
|
POST data payload.
|
|
|
|
To submit multiple values for a given key -- for example, to specify
|
|
the selections for a ``<select multiple>`` -- provide the values as a
|
|
list or tuple for the required key. For example, this value of ``data``
|
|
would submit three selected values for the field named ``choices``::
|
|
|
|
{'choices': ('a', 'b', 'd')}
|
|
|
|
Submitting files is a special case. To POST a file, you need only
|
|
provide the file field name as a key, and a file handle to the file you
|
|
wish to upload as a value. For example::
|
|
|
|
>>> c = Client()
|
|
>>> with open('wishlist.doc') as fp:
|
|
... c.post('/customers/wishes/', {'name': 'fred', 'attachment': fp})
|
|
|
|
(The name ``attachment`` here is not relevant; use whatever name your
|
|
file-processing code expects.)
|
|
|
|
Note that if you wish to use the same file handle for multiple
|
|
``post()`` calls then you will need to manually reset the file
|
|
pointer between posts. The easiest way to do this is to
|
|
manually close the file after it has been provided to
|
|
``post()``, as demonstrated above.
|
|
|
|
You should also ensure that the file is opened in a way that
|
|
allows the data to be read. If your file contains binary data
|
|
such as an image, this means you will need to open the file in
|
|
``rb`` (read binary) mode.
|
|
|
|
The ``extra`` argument acts the same as for :meth:`Client.get`.
|
|
|
|
If the URL you request with a POST contains encoded parameters, these
|
|
parameters will be made available in the request.GET data. For example,
|
|
if you were to make the request::
|
|
|
|
>>> c.post('/login/?visitor=true', {'name': 'fred', 'passwd': 'secret'})
|
|
|
|
... the view handling this request could interrogate request.POST
|
|
to retrieve the username and password, and could interrogate request.GET
|
|
to determine if the user was a visitor.
|
|
|
|
If you set ``follow`` to ``True`` the client will follow any redirects
|
|
and a ``redirect_chain`` attribute will be set in the response object
|
|
containing tuples of the intermediate urls and status codes.
|
|
|
|
.. method:: Client.head(path, data={}, follow=False, **extra)
|
|
|
|
Makes a HEAD request on the provided ``path`` and returns a
|
|
``Response`` object. This method works just like :meth:`Client.get`,
|
|
including the ``follow`` and ``extra`` arguments, except it does not
|
|
return a message body.
|
|
|
|
.. method:: Client.options(path, data='', content_type='application/octet-stream', follow=False, **extra)
|
|
|
|
Makes an OPTIONS request on the provided ``path`` and returns a
|
|
``Response`` object. Useful for testing RESTful interfaces.
|
|
|
|
When ``data`` is provided, it is used as the request body, and
|
|
a ``Content-Type`` header is set to ``content_type``.
|
|
|
|
.. versionchanged:: 1.5
|
|
:meth:`Client.options` used to process ``data`` like
|
|
:meth:`Client.get`.
|
|
|
|
The ``follow`` and ``extra`` arguments act the same as for
|
|
:meth:`Client.get`.
|
|
|
|
.. method:: Client.put(path, data='', content_type='application/octet-stream', follow=False, **extra)
|
|
|
|
Makes a PUT request on the provided ``path`` and returns a
|
|
``Response`` object. Useful for testing RESTful interfaces.
|
|
|
|
When ``data`` is provided, it is used as the request body, and
|
|
a ``Content-Type`` header is set to ``content_type``.
|
|
|
|
.. versionchanged:: 1.5
|
|
:meth:`Client.put` used to process ``data`` like
|
|
:meth:`Client.post`.
|
|
|
|
The ``follow`` and ``extra`` arguments act the same as for
|
|
:meth:`Client.get`.
|
|
|
|
.. method:: Client.delete(path, data='', content_type='application/octet-stream', follow=False, **extra)
|
|
|
|
Makes an DELETE request on the provided ``path`` and returns a
|
|
``Response`` object. Useful for testing RESTful interfaces.
|
|
|
|
When ``data`` is provided, it is used as the request body, and
|
|
a ``Content-Type`` header is set to ``content_type``.
|
|
|
|
.. versionchanged:: 1.5
|
|
:meth:`Client.delete` used to process ``data`` like
|
|
:meth:`Client.get`.
|
|
|
|
The ``follow`` and ``extra`` arguments act the same as for
|
|
:meth:`Client.get`.
|
|
|
|
|
|
.. method:: Client.login(**credentials)
|
|
|
|
If your site uses Django's :doc:`authentication system</topics/auth>`
|
|
and you deal with logging in users, you can use the test client's
|
|
``login()`` method to simulate the effect of a user logging into the
|
|
site.
|
|
|
|
After you call this method, the test client will have all the cookies
|
|
and session data required to pass any login-based tests that may form
|
|
part of a view.
|
|
|
|
The format of the ``credentials`` argument depends on which
|
|
:ref:`authentication backend <authentication-backends>` you're using
|
|
(which is configured by your :setting:`AUTHENTICATION_BACKENDS`
|
|
setting). If you're using the standard authentication backend provided
|
|
by Django (``ModelBackend``), ``credentials`` should be the user's
|
|
username and password, provided as keyword arguments::
|
|
|
|
>>> c = Client()
|
|
>>> c.login(username='fred', password='secret')
|
|
|
|
# Now you can access a view that's only available to logged-in users.
|
|
|
|
If you're using a different authentication backend, this method may
|
|
require different credentials. It requires whichever credentials are
|
|
required by your backend's ``authenticate()`` method.
|
|
|
|
``login()`` returns ``True`` if it the credentials were accepted and
|
|
login was successful.
|
|
|
|
Finally, you'll need to remember to create user accounts before you can
|
|
use this method. As we explained above, the test runner is executed
|
|
using a test database, which contains no users by default. As a result,
|
|
user accounts that are valid on your production site will not work
|
|
under test conditions. You'll need to create users as part of the test
|
|
suite -- either manually (using the Django model API) or with a test
|
|
fixture. Remember that if you want your test user to have a password,
|
|
you can't set the user's password by setting the password attribute
|
|
directly -- you must use the
|
|
:meth:`~django.contrib.auth.models.User.set_password()` function to
|
|
store a correctly hashed password. Alternatively, you can use the
|
|
:meth:`~django.contrib.auth.models.UserManager.create_user` helper
|
|
method to create a new user with a correctly hashed password.
|
|
|
|
.. method:: Client.logout()
|
|
|
|
If your site uses Django's :doc:`authentication system</topics/auth>`,
|
|
the ``logout()`` method can be used to simulate the effect of a user
|
|
logging out of your site.
|
|
|
|
After you call this method, the test client will have all the cookies
|
|
and session data cleared to defaults. Subsequent requests will appear
|
|
to come from an AnonymousUser.
|
|
|
|
Testing responses
|
|
~~~~~~~~~~~~~~~~~
|
|
|
|
The ``get()`` and ``post()`` methods both return a ``Response`` object. This
|
|
``Response`` object is *not* the same as the ``HttpResponse`` object returned
|
|
Django views; the test response object has some additional data useful for
|
|
test code to verify.
|
|
|
|
Specifically, a ``Response`` object has the following attributes:
|
|
|
|
.. class:: Response()
|
|
|
|
.. attribute:: client
|
|
|
|
The test client that was used to make the request that resulted in the
|
|
response.
|
|
|
|
.. attribute:: content
|
|
|
|
The body of the response, as a string. This is the final page content as
|
|
rendered by the view, or any error message.
|
|
|
|
.. attribute:: context
|
|
|
|
The template ``Context`` instance that was used to render the template that
|
|
produced the response content.
|
|
|
|
If the rendered page used multiple templates, then ``context`` will be a
|
|
list of ``Context`` objects, in the order in which they were rendered.
|
|
|
|
Regardless of the number of templates used during rendering, you can
|
|
retrieve context values using the ``[]`` operator. For example, the
|
|
context variable ``name`` could be retrieved using::
|
|
|
|
>>> response = client.get('/foo/')
|
|
>>> response.context['name']
|
|
'Arthur'
|
|
|
|
.. attribute:: request
|
|
|
|
The request data that stimulated the response.
|
|
|
|
.. attribute:: status_code
|
|
|
|
The HTTP status of the response, as an integer. See
|
|
:rfc:`2616#section-10` for a full list of HTTP status codes.
|
|
|
|
.. attribute:: templates
|
|
|
|
A list of ``Template`` instances used to render the final content, in
|
|
the order they were rendered. For each template in the list, use
|
|
``template.name`` to get the template's file name, if the template was
|
|
loaded from a file. (The name is a string such as
|
|
``'admin/index.html'``.)
|
|
|
|
You can also use dictionary syntax on the response object to query the value
|
|
of any settings in the HTTP headers. For example, you could determine the
|
|
content type of a response using ``response['Content-Type']``.
|
|
|
|
Exceptions
|
|
~~~~~~~~~~
|
|
|
|
If you point the test client at a view that raises an exception, that exception
|
|
will be visible in the test case. You can then use a standard ``try ... except``
|
|
block or :meth:`~unittest.TestCase.assertRaises` to test for exceptions.
|
|
|
|
The only exceptions that are not visible to the test client are ``Http404``,
|
|
``PermissionDenied`` and ``SystemExit``. Django catches these exceptions
|
|
internally and converts them into the appropriate HTTP response codes. In these
|
|
cases, you can check ``response.status_code`` in your test.
|
|
|
|
Persistent state
|
|
~~~~~~~~~~~~~~~~
|
|
|
|
The test client is stateful. If a response returns a cookie, then that cookie
|
|
will be stored in the test client and sent with all subsequent ``get()`` and
|
|
``post()`` requests.
|
|
|
|
Expiration policies for these cookies are not followed. If you want a cookie
|
|
to expire, either delete it manually or create a new ``Client`` instance (which
|
|
will effectively delete all cookies).
|
|
|
|
A test client has two attributes that store persistent state information. You
|
|
can access these properties as part of a test condition.
|
|
|
|
.. attribute:: Client.cookies
|
|
|
|
A Python :class:`~Cookie.SimpleCookie` object, containing the current values
|
|
of all the client cookies. See the documentation of the :mod:`Cookie` module
|
|
for more.
|
|
|
|
.. attribute:: Client.session
|
|
|
|
A dictionary-like object containing session information. See the
|
|
:doc:`session documentation</topics/http/sessions>` for full details.
|
|
|
|
To modify the session and then save it, it must be stored in a variable
|
|
first (because a new ``SessionStore`` is created every time this property
|
|
is accessed)::
|
|
|
|
def test_something(self):
|
|
session = self.client.session
|
|
session['somekey'] = 'test'
|
|
session.save()
|
|
|
|
Example
|
|
~~~~~~~
|
|
|
|
The following is a simple unit test using the test client::
|
|
|
|
from django.utils import unittest
|
|
from django.test.client import Client
|
|
|
|
class SimpleTest(unittest.TestCase):
|
|
def setUp(self):
|
|
# Every test needs a client.
|
|
self.client = Client()
|
|
|
|
def test_details(self):
|
|
# Issue a GET request.
|
|
response = self.client.get('/customer/details/')
|
|
|
|
# Check that the response is 200 OK.
|
|
self.assertEqual(response.status_code, 200)
|
|
|
|
# Check that the rendered context contains 5 customers.
|
|
self.assertEqual(len(response.context['customers']), 5)
|
|
|
|
The request factory
|
|
-------------------
|
|
|
|
.. class:: RequestFactory
|
|
|
|
The :class:`~django.test.client.RequestFactory` shares the same API as
|
|
the test client. However, instead of behaving like a browser, the
|
|
RequestFactory provides a way to generate a request instance that can
|
|
be used as the first argument to any view. This means you can test a
|
|
view function the same way as you would test any other function -- as
|
|
a black box, with exactly known inputs, testing for specific outputs.
|
|
|
|
The API for the :class:`~django.test.client.RequestFactory` is a slightly
|
|
restricted subset of the test client API:
|
|
|
|
* It only has access to the HTTP methods :meth:`~Client.get()`,
|
|
:meth:`~Client.post()`, :meth:`~Client.put()`,
|
|
:meth:`~Client.delete()`, :meth:`~Client.head()` and
|
|
:meth:`~Client.options()`.
|
|
|
|
* These methods accept all the same arguments *except* for
|
|
``follows``. Since this is just a factory for producing
|
|
requests, it's up to you to handle the response.
|
|
|
|
* It does not support middleware. Session and authentication
|
|
attributes must be supplied by the test itself if required
|
|
for the view to function properly.
|
|
|
|
Example
|
|
~~~~~~~
|
|
|
|
The following is a simple unit test using the request factory::
|
|
|
|
from django.utils import unittest
|
|
from django.test.client import RequestFactory
|
|
|
|
class SimpleTest(unittest.TestCase):
|
|
def setUp(self):
|
|
# Every test needs access to the request factory.
|
|
self.factory = RequestFactory()
|
|
|
|
def test_details(self):
|
|
# Create an instance of a GET request.
|
|
request = self.factory.get('/customer/details')
|
|
|
|
# Test my_view() as if it were deployed at /customer/details
|
|
response = my_view(request)
|
|
self.assertEqual(response.status_code, 200)
|
|
|
|
Test cases
|
|
----------
|
|
|
|
Provided test case classes
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. currentmodule:: django.test
|
|
|
|
Normal Python unit test classes extend a base class of
|
|
:class:`unittest.TestCase`. Django provides a few extensions of this base class:
|
|
|
|
.. _testcase_hierarchy_diagram:
|
|
|
|
.. figure:: _images/django_unittest_classes_hierarchy.png
|
|
:alt: Hierarchy of Django unit testing classes (TestCase subclasses)
|
|
|
|
Hierarchy of Django unit testing classes
|
|
|
|
TestCase
|
|
^^^^^^^^
|
|
|
|
.. class:: TestCase()
|
|
|
|
This class provides some additional capabilities that can be useful for testing
|
|
Web sites.
|
|
|
|
Converting a normal :class:`unittest.TestCase` to a Django :class:`TestCase` is
|
|
easy: Just change the base class of your test from `'unittest.TestCase'` to
|
|
`'django.test.TestCase'`. All of the standard Python unit test functionality
|
|
will continue to be available, but it will be augmented with some useful
|
|
additions, including:
|
|
|
|
* Automatic loading of fixtures.
|
|
|
|
* Wraps each test in a transaction.
|
|
|
|
* Creates a TestClient instance.
|
|
|
|
* Django-specific assertions for testing for things like redirection and form
|
|
errors.
|
|
|
|
.. versionchanged:: 1.5
|
|
The order in which tests are run has changed. See `Order in which tests are
|
|
executed`_.
|
|
|
|
``TestCase`` inherits from :class:`~django.test.TransactionTestCase`.
|
|
|
|
TransactionTestCase
|
|
^^^^^^^^^^^^^^^^^^^
|
|
|
|
.. class:: TransactionTestCase()
|
|
|
|
Django ``TestCase`` classes make use of database transaction facilities, if
|
|
available, to speed up the process of resetting the database to a known state
|
|
at the beginning of each test. A consequence of this, however, is that the
|
|
effects of transaction commit and rollback cannot be tested by a Django
|
|
``TestCase`` class. If your test requires testing of such transactional
|
|
behavior, you should use a Django ``TransactionTestCase``.
|
|
|
|
``TransactionTestCase`` and ``TestCase`` are identical except for the manner
|
|
in which the database is reset to a known state and the ability for test code
|
|
to test the effects of commit and rollback:
|
|
|
|
* A ``TransactionTestCase`` resets the database after the test runs by
|
|
truncating all tables. A ``TransactionTestCase`` may call commit and rollback
|
|
and observe the effects of these calls on the database.
|
|
|
|
* A ``TestCase``, on the other hand, does not truncate tables after a test.
|
|
Instead, it encloses the test code in a database transaction that is rolled
|
|
back at the end of the test. It also prevents the code under test from
|
|
issuing any commit or rollback operations on the database, to ensure that the
|
|
rollback at the end of the test restores the database to its initial state.
|
|
|
|
When running on a database that does not support rollback (e.g. MySQL with the
|
|
MyISAM storage engine), ``TestCase`` falls back to initializing the database
|
|
by truncating tables and reloading initial data.
|
|
|
|
.. note::
|
|
|
|
.. versionchanged:: 1.5
|
|
|
|
Prior to 1.5, ``TransactionTestCase`` flushed the database tables *before*
|
|
each test. In Django 1.5, this is instead done *after* the test has been run.
|
|
|
|
When the flush took place before the test, it was guaranteed that primary
|
|
key values started at one in :class:`~django.test.TransactionTestCase`
|
|
tests.
|
|
|
|
Tests should not depend on this behaviour, but for legacy tests that do, the
|
|
:attr:`~TransactionTestCase.reset_sequences` attribute can be used until
|
|
the test has been properly updated.
|
|
|
|
.. versionchanged:: 1.5
|
|
The order in which tests are run has changed. See `Order in which tests are
|
|
executed`_.
|
|
|
|
``TransactionTestCase`` inherits from :class:`~django.test.SimpleTestCase`.
|
|
|
|
.. attribute:: TransactionTestCase.reset_sequences
|
|
|
|
.. versionadded:: 1.5
|
|
|
|
Setting ``reset_sequences = True`` on a ``TransactionTestCase`` will make
|
|
sure sequences are always reset before the test run::
|
|
|
|
class TestsThatDependsOnPrimaryKeySequences(TransactionTestCase):
|
|
reset_sequences = True
|
|
|
|
def test_animal_pk(self):
|
|
lion = Animal.objects.create(name="lion", sound="roar")
|
|
# lion.pk is guaranteed to always be 1
|
|
self.assertEqual(lion.pk, 1)
|
|
|
|
Unless you are explicitly testing primary keys sequence numbers, it is
|
|
recommended that you do not hard code primary key values in tests.
|
|
|
|
Using ``reset_sequences = True`` will slow down the test, since the primary
|
|
key reset is an relatively expensive database operation.
|
|
|
|
SimpleTestCase
|
|
^^^^^^^^^^^^^^
|
|
|
|
.. class:: SimpleTestCase()
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
A very thin subclass of :class:`unittest.TestCase`, it extends it with some
|
|
basic functionality like:
|
|
|
|
* Saving and restoring the Python warning machinery state.
|
|
* Checking that a callable :meth:`raises a certain exception <SimpleTestCase.assertRaisesMessage>`.
|
|
* :meth:`Testing form field rendering <SimpleTestCase.assertFieldOutput>`.
|
|
* Testing server :ref:`HTML responses for the presence/lack of a given fragment <assertions>`.
|
|
* The ability to run tests with :ref:`modified settings <overriding-settings>`
|
|
|
|
If you need any of the other more complex and heavyweight Django-specific
|
|
features like:
|
|
|
|
* Using the :attr:`~TestCase.client` :class:`~django.test.client.Client`.
|
|
* Testing or using the ORM.
|
|
* Database :attr:`~TestCase.fixtures`.
|
|
* Custom test-time :attr:`URL maps <TestCase.urls>`.
|
|
* Test :ref:`skipping based on database backend features <skipping-tests>`.
|
|
* The remaining specialized :ref:`assert* <assertions>` methods.
|
|
|
|
then you should use :class:`~django.test.TransactionTestCase` or
|
|
:class:`~django.test.TestCase` instead.
|
|
|
|
``SimpleTestCase`` inherits from :class:`django.utils.unittest.TestCase`.
|
|
|
|
Default test client
|
|
~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. attribute:: TestCase.client
|
|
|
|
Every test case in a ``django.test.TestCase`` instance has access to an
|
|
instance of a Django test client. This client can be accessed as
|
|
``self.client``. This client is recreated for each test, so you don't have to
|
|
worry about state (such as cookies) carrying over from one test to another.
|
|
|
|
This means, instead of instantiating a ``Client`` in each test::
|
|
|
|
from django.utils import unittest
|
|
from django.test.client import Client
|
|
|
|
class SimpleTest(unittest.TestCase):
|
|
def test_details(self):
|
|
client = Client()
|
|
response = client.get('/customer/details/')
|
|
self.assertEqual(response.status_code, 200)
|
|
|
|
def test_index(self):
|
|
client = Client()
|
|
response = client.get('/customer/index/')
|
|
self.assertEqual(response.status_code, 200)
|
|
|
|
...you can just refer to ``self.client``, like so::
|
|
|
|
from django.test import TestCase
|
|
|
|
class SimpleTest(TestCase):
|
|
def test_details(self):
|
|
response = self.client.get('/customer/details/')
|
|
self.assertEqual(response.status_code, 200)
|
|
|
|
def test_index(self):
|
|
response = self.client.get('/customer/index/')
|
|
self.assertEqual(response.status_code, 200)
|
|
|
|
Customizing the test client
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. attribute:: TestCase.client_class
|
|
|
|
If you want to use a different ``Client`` class (for example, a subclass
|
|
with customized behavior), use the :attr:`~TestCase.client_class` class
|
|
attribute::
|
|
|
|
from django.test import TestCase
|
|
from django.test.client import Client
|
|
|
|
class MyTestClient(Client):
|
|
# Specialized methods for your environment...
|
|
|
|
class MyTest(TestCase):
|
|
client_class = MyTestClient
|
|
|
|
def test_my_stuff(self):
|
|
# Here self.client is an instance of MyTestClient...
|
|
|
|
.. _topics-testing-fixtures:
|
|
|
|
Fixture loading
|
|
~~~~~~~~~~~~~~~
|
|
|
|
.. attribute:: TestCase.fixtures
|
|
|
|
A test case for a database-backed Web site isn't much use if there isn't any
|
|
data in the database. To make it easy to put test data into the database,
|
|
Django's custom ``TestCase`` class provides a way of loading **fixtures**.
|
|
|
|
A fixture is a collection of data that Django knows how to import into a
|
|
database. For example, if your site has user accounts, you might set up a
|
|
fixture of fake user accounts in order to populate your database during tests.
|
|
|
|
The most straightforward way of creating a fixture is to use the
|
|
:djadmin:`manage.py dumpdata <dumpdata>` command. This assumes you
|
|
already have some data in your database. See the :djadmin:`dumpdata
|
|
documentation<dumpdata>` for more details.
|
|
|
|
.. note::
|
|
|
|
If you've ever run :djadmin:`manage.py syncdb<syncdb>`, you've
|
|
already used a fixture without even knowing it! When you call
|
|
:djadmin:`syncdb` in the database for the first time, Django
|
|
installs a fixture called ``initial_data``. This gives you a way
|
|
of populating a new database with any initial data, such as a
|
|
default set of categories.
|
|
|
|
Fixtures with other names can always be installed manually using
|
|
the :djadmin:`manage.py loaddata<loaddata>` command.
|
|
|
|
.. admonition:: Initial SQL data and testing
|
|
|
|
Django provides a second way to insert initial data into models --
|
|
the :ref:`custom SQL hook <initial-sql>`. However, this technique
|
|
*cannot* be used to provide initial data for testing purposes.
|
|
Django's test framework flushes the contents of the test database
|
|
after each test; as a result, any data added using the custom SQL
|
|
hook will be lost.
|
|
|
|
Once you've created a fixture and placed it in a ``fixtures`` directory in one
|
|
of your :setting:`INSTALLED_APPS`, you can use it in your unit tests by
|
|
specifying a ``fixtures`` class attribute on your :class:`django.test.TestCase`
|
|
subclass::
|
|
|
|
from django.test import TestCase
|
|
from myapp.models import Animal
|
|
|
|
class AnimalTestCase(TestCase):
|
|
fixtures = ['mammals.json', 'birds']
|
|
|
|
def setUp(self):
|
|
# Test definitions as before.
|
|
call_setup_methods()
|
|
|
|
def testFluffyAnimals(self):
|
|
# A test that uses the fixtures.
|
|
call_some_test_code()
|
|
|
|
Here's specifically what will happen:
|
|
|
|
* At the start of each test case, before ``setUp()`` is run, Django will
|
|
flush the database, returning the database to the state it was in
|
|
directly after :djadmin:`syncdb` was called.
|
|
|
|
* Then, all the named fixtures are installed. In this example, Django will
|
|
install any JSON fixture named ``mammals``, followed by any fixture named
|
|
``birds``. See the :djadmin:`loaddata` documentation for more
|
|
details on defining and installing fixtures.
|
|
|
|
This flush/load procedure is repeated for each test in the test case, so you
|
|
can be certain that the outcome of a test will not be affected by another test,
|
|
or by the order of test execution.
|
|
|
|
URLconf configuration
|
|
~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. attribute:: TestCase.urls
|
|
|
|
If your application provides views, you may want to include tests that use the
|
|
test client to exercise those views. However, an end user is free to deploy the
|
|
views in your application at any URL of their choosing. This means that your
|
|
tests can't rely upon the fact that your views will be available at a
|
|
particular URL.
|
|
|
|
In order to provide a reliable URL space for your test,
|
|
``django.test.TestCase`` provides the ability to customize the URLconf
|
|
configuration for the duration of the execution of a test suite. If your
|
|
``TestCase`` instance defines an ``urls`` attribute, the ``TestCase`` will use
|
|
the value of that attribute as the :setting:`ROOT_URLCONF` for the duration
|
|
of that test.
|
|
|
|
For example::
|
|
|
|
from django.test import TestCase
|
|
|
|
class TestMyViews(TestCase):
|
|
urls = 'myapp.test_urls'
|
|
|
|
def testIndexPageView(self):
|
|
# Here you'd test your view using ``Client``.
|
|
call_some_test_code()
|
|
|
|
This test case will use the contents of ``myapp.test_urls`` as the
|
|
URLconf for the duration of the test case.
|
|
|
|
.. _emptying-test-outbox:
|
|
|
|
Multi-database support
|
|
~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. attribute:: TestCase.multi_db
|
|
|
|
Django sets up a test database corresponding to every database that is
|
|
defined in the :setting:`DATABASES` definition in your settings
|
|
file. However, a big part of the time taken to run a Django TestCase
|
|
is consumed by the call to ``flush`` that ensures that you have a
|
|
clean database at the start of each test run. If you have multiple
|
|
databases, multiple flushes are required (one for each database),
|
|
which can be a time consuming activity -- especially if your tests
|
|
don't need to test multi-database activity.
|
|
|
|
As an optimization, Django only flushes the ``default`` database at
|
|
the start of each test run. If your setup contains multiple databases,
|
|
and you have a test that requires every database to be clean, you can
|
|
use the ``multi_db`` attribute on the test suite to request a full
|
|
flush.
|
|
|
|
For example::
|
|
|
|
class TestMyViews(TestCase):
|
|
multi_db = True
|
|
|
|
def testIndexPageView(self):
|
|
call_some_test_code()
|
|
|
|
This test case will flush *all* the test databases before running
|
|
``testIndexPageView``.
|
|
|
|
.. _overriding-settings:
|
|
|
|
Overriding settings
|
|
~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. method:: TestCase.settings
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
For testing purposes it's often useful to change a setting temporarily and
|
|
revert to the original value after running the testing code. For this use case
|
|
Django provides a standard Python context manager (see :pep:`343`)
|
|
:meth:`~django.test.TestCase.settings`, which can be used like this::
|
|
|
|
from django.test import TestCase
|
|
|
|
class LoginTestCase(TestCase):
|
|
|
|
def test_login(self):
|
|
|
|
# First check for the default behavior
|
|
response = self.client.get('/sekrit/')
|
|
self.assertRedirects(response, '/accounts/login/?next=/sekrit/')
|
|
|
|
# Then override the LOGIN_URL setting
|
|
with self.settings(LOGIN_URL='/other/login/'):
|
|
response = self.client.get('/sekrit/')
|
|
self.assertRedirects(response, '/other/login/?next=/sekrit/')
|
|
|
|
This example will override the :setting:`LOGIN_URL` setting for the code
|
|
in the ``with`` block and reset its value to the previous state afterwards.
|
|
|
|
.. currentmodule:: django.test.utils
|
|
|
|
.. function:: override_settings
|
|
|
|
In case you want to override a setting for just one test method or even the
|
|
whole :class:`TestCase` class, Django provides the
|
|
:func:`~django.test.utils.override_settings` decorator (see :pep:`318`). It's
|
|
used like this::
|
|
|
|
from django.test import TestCase
|
|
from django.test.utils import override_settings
|
|
|
|
class LoginTestCase(TestCase):
|
|
|
|
@override_settings(LOGIN_URL='/other/login/')
|
|
def test_login(self):
|
|
response = self.client.get('/sekrit/')
|
|
self.assertRedirects(response, '/other/login/?next=/sekrit/')
|
|
|
|
The decorator can also be applied to test case classes::
|
|
|
|
from django.test import TestCase
|
|
from django.test.utils import override_settings
|
|
|
|
@override_settings(LOGIN_URL='/other/login/')
|
|
class LoginTestCase(TestCase):
|
|
|
|
def test_login(self):
|
|
response = self.client.get('/sekrit/')
|
|
self.assertRedirects(response, '/other/login/?next=/sekrit/')
|
|
|
|
.. note::
|
|
|
|
When given a class, the decorator modifies the class directly and
|
|
returns it; it doesn't create and return a modified copy of it. So if
|
|
you try to tweak the above example to assign the return value to a
|
|
different name than ``LoginTestCase``, you may be surprised to find that
|
|
the original ``LoginTestCase`` is still equally affected by the
|
|
decorator.
|
|
|
|
When overriding settings, make sure to handle the cases in which your app's
|
|
code uses a cache or similar feature that retains state even if the
|
|
setting is changed. Django provides the
|
|
:data:`django.test.signals.setting_changed` signal that lets you register
|
|
callbacks to clean up and otherwise reset state when settings are changed.
|
|
|
|
Django itself uses this signal to reset various data:
|
|
|
|
=========================== ========================
|
|
Overriden settings Data reset
|
|
=========================== ========================
|
|
USE_TZ, TIME_ZONE Databases timezone
|
|
TEMPLATE_CONTEXT_PROCESSORS Context processors cache
|
|
TEMPLATE_LOADERS Template loaders cache
|
|
SERIALIZATION_MODULES Serializers cache
|
|
LOCALE_PATHS, LANGUAGE_CODE Default translation and loaded translations
|
|
=========================== ========================
|
|
|
|
Emptying the test outbox
|
|
~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
If you use Django's custom ``TestCase`` class, the test runner will clear the
|
|
contents of the test email outbox at the start of each test case.
|
|
|
|
For more detail on email services during tests, see `Email services`_.
|
|
|
|
.. _assertions:
|
|
|
|
Assertions
|
|
~~~~~~~~~~
|
|
|
|
.. currentmodule:: django.test
|
|
|
|
As Python's normal :class:`unittest.TestCase` class implements assertion methods
|
|
such as :meth:`~unittest.TestCase.assertTrue` and
|
|
:meth:`~unittest.TestCase.assertEqual`, Django's custom :class:`TestCase` class
|
|
provides a number of custom assertion methods that are useful for testing Web
|
|
applications:
|
|
|
|
The failure messages given by most of these assertion methods can be customized
|
|
with the ``msg_prefix`` argument. This string will be prefixed to any failure
|
|
message generated by the assertion. This allows you to provide additional
|
|
details that may help you to identify the location and cause of an failure in
|
|
your test suite.
|
|
|
|
.. method:: SimpleTestCase.assertRaisesMessage(expected_exception, expected_message, callable_obj=None, *args, **kwargs)
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
Asserts that execution of callable ``callable_obj`` raised the
|
|
``expected_exception`` exception and that such exception has an
|
|
``expected_message`` representation. Any other outcome is reported as a
|
|
failure. Similar to unittest's :meth:`~unittest.TestCase.assertRaisesRegexp`
|
|
with the difference that ``expected_message`` isn't a regular expression.
|
|
|
|
.. method:: SimpleTestCase.assertFieldOutput(self, fieldclass, valid, invalid, field_args=None, field_kwargs=None, empty_value=u'')
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
Asserts that a form field behaves correctly with various inputs.
|
|
|
|
:param fieldclass: the class of the field to be tested.
|
|
:param valid: a dictionary mapping valid inputs to their expected cleaned
|
|
values.
|
|
:param invalid: a dictionary mapping invalid inputs to one or more raised
|
|
error messages.
|
|
:param field_args: the args passed to instantiate the field.
|
|
:param field_kwargs: the kwargs passed to instantiate the field.
|
|
:param empty_value: the expected clean output for inputs in ``EMPTY_VALUES``.
|
|
|
|
For example, the following code tests that an ``EmailField`` accepts
|
|
"a@a.com" as a valid email address, but rejects "aaa" with a reasonable
|
|
error message::
|
|
|
|
self.assertFieldOutput(EmailField, {'a@a.com': 'a@a.com'}, {'aaa': [u'Enter a valid email address.']})
|
|
|
|
|
|
.. method:: TestCase.assertContains(response, text, count=None, status_code=200, msg_prefix='', html=False)
|
|
|
|
Asserts that a ``Response`` instance produced the given ``status_code`` and
|
|
that ``text`` appears in the content of the response. If ``count`` is
|
|
provided, ``text`` must occur exactly ``count`` times in the response.
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
Set ``html`` to ``True`` to handle ``text`` as HTML. The comparison with
|
|
the response content will be based on HTML semantics instead of
|
|
character-by-character equality. Whitespace is ignored in most cases,
|
|
attribute ordering is not significant. See
|
|
:meth:`~SimpleTestCase.assertHTMLEqual` for more details.
|
|
|
|
.. method:: TestCase.assertNotContains(response, text, status_code=200, msg_prefix='', html=False)
|
|
|
|
Asserts that a ``Response`` instance produced the given ``status_code`` and
|
|
that ``text`` does not appears in the content of the response.
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
Set ``html`` to ``True`` to handle ``text`` as HTML. The comparison with
|
|
the response content will be based on HTML semantics instead of
|
|
character-by-character equality. Whitespace is ignored in most cases,
|
|
attribute ordering is not significant. See
|
|
:meth:`~SimpleTestCase.assertHTMLEqual` for more details.
|
|
|
|
.. method:: TestCase.assertFormError(response, form, field, errors, msg_prefix='')
|
|
|
|
Asserts that a field on a form raises the provided list of errors when
|
|
rendered on the form.
|
|
|
|
``form`` is the name the ``Form`` instance was given in the template
|
|
context.
|
|
|
|
``field`` is the name of the field on the form to check. If ``field``
|
|
has a value of ``None``, non-field errors (errors you can access via
|
|
``form.non_field_errors()``) will be checked.
|
|
|
|
``errors`` is an error string, or a list of error strings, that are
|
|
expected as a result of form validation.
|
|
|
|
.. method:: TestCase.assertTemplateUsed(response, template_name, msg_prefix='')
|
|
|
|
Asserts that the template with the given name was used in rendering the
|
|
response.
|
|
|
|
The name is a string such as ``'admin/index.html'``.
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
You can use this as a context manager, like this::
|
|
|
|
with self.assertTemplateUsed('index.html'):
|
|
render_to_string('index.html')
|
|
with self.assertTemplateUsed(template_name='index.html'):
|
|
render_to_string('index.html')
|
|
|
|
.. method:: TestCase.assertTemplateNotUsed(response, template_name, msg_prefix='')
|
|
|
|
Asserts that the template with the given name was *not* used in rendering
|
|
the response.
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
You can use this as a context manager in the same way as
|
|
:meth:`~TestCase.assertTemplateUsed`.
|
|
|
|
.. method:: TestCase.assertRedirects(response, expected_url, status_code=302, target_status_code=200, msg_prefix='')
|
|
|
|
Asserts that the response return a ``status_code`` redirect status, it
|
|
redirected to ``expected_url`` (including any GET data), and the final
|
|
page was received with ``target_status_code``.
|
|
|
|
If your request used the ``follow`` argument, the ``expected_url`` and
|
|
``target_status_code`` will be the url and status code for the final
|
|
point of the redirect chain.
|
|
|
|
.. method:: TestCase.assertQuerysetEqual(qs, values, transform=repr, ordered=True)
|
|
|
|
Asserts that a queryset ``qs`` returns a particular list of values ``values``.
|
|
|
|
The comparison of the contents of ``qs`` and ``values`` is performed using
|
|
the function ``transform``; by default, this means that the ``repr()`` of
|
|
each value is compared. Any other callable can be used if ``repr()`` doesn't
|
|
provide a unique or helpful comparison.
|
|
|
|
By default, the comparison is also ordering dependent. If ``qs`` doesn't
|
|
provide an implicit ordering, you can set the ``ordered`` parameter to
|
|
``False``, which turns the comparison into a Python set comparison.
|
|
|
|
.. versionchanged:: 1.4
|
|
The ``ordered`` parameter is new in version 1.4. In earlier versions,
|
|
you would need to ensure the queryset is ordered consistently, possibly
|
|
via an explicit ``order_by()`` call on the queryset prior to
|
|
comparison.
|
|
|
|
|
|
.. method:: TestCase.assertNumQueries(num, func, *args, **kwargs)
|
|
|
|
Asserts that when ``func`` is called with ``*args`` and ``**kwargs`` that
|
|
``num`` database queries are executed.
|
|
|
|
If a ``"using"`` key is present in ``kwargs`` it is used as the database
|
|
alias for which to check the number of queries. If you wish to call a
|
|
function with a ``using`` parameter you can do it by wrapping the call with
|
|
a ``lambda`` to add an extra parameter::
|
|
|
|
self.assertNumQueries(7, lambda: my_function(using=7))
|
|
|
|
You can also use this as a context manager::
|
|
|
|
with self.assertNumQueries(2):
|
|
Person.objects.create(name="Aaron")
|
|
Person.objects.create(name="Daniel")
|
|
|
|
.. method:: SimpleTestCase.assertHTMLEqual(html1, html2, msg=None)
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
Asserts that the strings ``html1`` and ``html2`` are equal. The comparison
|
|
is based on HTML semantics. The comparison takes following things into
|
|
account:
|
|
|
|
* Whitespace before and after HTML tags is ignored.
|
|
* All types of whitespace are considered equivalent.
|
|
* All open tags are closed implicitly, e.g. when a surrounding tag is
|
|
closed or the HTML document ends.
|
|
* Empty tags are equivalent to their self-closing version.
|
|
* The ordering of attributes of an HTML element is not significant.
|
|
* Attributes without an argument are equal to attributes that equal in
|
|
name and value (see the examples).
|
|
|
|
The following examples are valid tests and don't raise any
|
|
``AssertionError``::
|
|
|
|
self.assertHTMLEqual('<p>Hello <b>world!</p>',
|
|
'''<p>
|
|
Hello <b>world! <b/>
|
|
</p>''')
|
|
self.assertHTMLEqual(
|
|
'<input type="checkbox" checked="checked" id="id_accept_terms" />',
|
|
'<input id="id_accept_terms" type='checkbox' checked>')
|
|
|
|
``html1`` and ``html2`` must be valid HTML. An ``AssertionError`` will be
|
|
raised if one of them cannot be parsed.
|
|
|
|
.. method:: SimpleTestCase.assertHTMLNotEqual(html1, html2, msg=None)
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
Asserts that the strings ``html1`` and ``html2`` are *not* equal. The
|
|
comparison is based on HTML semantics. See
|
|
:meth:`~SimpleTestCase.assertHTMLEqual` for details.
|
|
|
|
``html1`` and ``html2`` must be valid HTML. An ``AssertionError`` will be
|
|
raised if one of them cannot be parsed.
|
|
|
|
.. method:: SimpleTestCase.assertXMLEqual(xml1, xml2, msg=None)
|
|
|
|
.. versionadded:: 1.5
|
|
|
|
Asserts that the strings ``xml1`` and ``xml2`` are equal. The
|
|
comparison is based on XML semantics. Similarily to
|
|
:meth:`~SimpleTestCase.assertHTMLEqual`, the comparison is
|
|
made on parsed content, hence only semantic differences are considered, not
|
|
syntax differences. When unvalid XML is passed in any parameter, an
|
|
``AssertionError`` is always raised, even if both string are identical.
|
|
|
|
.. method:: SimpleTestCase.assertXMLNotEqual(xml1, xml2, msg=None)
|
|
|
|
.. versionadded:: 1.5
|
|
|
|
Asserts that the strings ``xml1`` and ``xml2`` are *not* equal. The
|
|
comparison is based on XML semantics. See
|
|
:meth:`~SimpleTestCase.assertXMLEqual` for details.
|
|
|
|
.. _topics-testing-email:
|
|
|
|
Email services
|
|
--------------
|
|
|
|
If any of your Django views send email using :doc:`Django's email
|
|
functionality </topics/email>`, you probably don't want to send email each time
|
|
you run a test using that view. For this reason, Django's test runner
|
|
automatically redirects all Django-sent email to a dummy outbox. This lets you
|
|
test every aspect of sending email -- from the number of messages sent to the
|
|
contents of each message -- without actually sending the messages.
|
|
|
|
The test runner accomplishes this by transparently replacing the normal
|
|
email backend with a testing backend.
|
|
(Don't worry -- this has no effect on any other email senders outside of
|
|
Django, such as your machine's mail server, if you're running one.)
|
|
|
|
.. currentmodule:: django.core.mail
|
|
|
|
.. data:: django.core.mail.outbox
|
|
|
|
During test running, each outgoing email is saved in
|
|
``django.core.mail.outbox``. This is a simple list of all
|
|
:class:`~django.core.mail.EmailMessage` instances that have been sent.
|
|
The ``outbox`` attribute is a special attribute that is created *only* when
|
|
the ``locmem`` email backend is used. It doesn't normally exist as part of the
|
|
:mod:`django.core.mail` module and you can't import it directly. The code
|
|
below shows how to access this attribute correctly.
|
|
|
|
Here's an example test that examines ``django.core.mail.outbox`` for length
|
|
and contents::
|
|
|
|
from django.core import mail
|
|
from django.test import TestCase
|
|
|
|
class EmailTest(TestCase):
|
|
def test_send_email(self):
|
|
# Send message.
|
|
mail.send_mail('Subject here', 'Here is the message.',
|
|
'from@example.com', ['to@example.com'],
|
|
fail_silently=False)
|
|
|
|
# Test that one message has been sent.
|
|
self.assertEqual(len(mail.outbox), 1)
|
|
|
|
# Verify that the subject of the first message is correct.
|
|
self.assertEqual(mail.outbox[0].subject, 'Subject here')
|
|
|
|
As noted :ref:`previously <emptying-test-outbox>`, the test outbox is emptied
|
|
at the start of every test in a Django ``TestCase``. To empty the outbox
|
|
manually, assign the empty list to ``mail.outbox``::
|
|
|
|
from django.core import mail
|
|
|
|
# Empty the test outbox
|
|
mail.outbox = []
|
|
|
|
.. _skipping-tests:
|
|
|
|
Skipping tests
|
|
--------------
|
|
|
|
.. currentmodule:: django.test
|
|
|
|
The unittest library provides the :func:`@skipIf <unittest.skipIf>` and
|
|
:func:`@skipUnless <unittest.skipUnless>` decorators to allow you to skip tests
|
|
if you know ahead of time that those tests are going to fail under certain
|
|
conditions.
|
|
|
|
For example, if your test requires a particular optional library in order to
|
|
succeed, you could decorate the test case with :func:`@skipIf
|
|
<unittest.skipIf>`. Then, the test runner will report that the test wasn't
|
|
executed and why, instead of failing the test or omitting the test altogether.
|
|
|
|
To supplement these test skipping behaviors, Django provides two
|
|
additional skip decorators. Instead of testing a generic boolean,
|
|
these decorators check the capabilities of the database, and skip the
|
|
test if the database doesn't support a specific named feature.
|
|
|
|
The decorators use a string identifier to describe database features.
|
|
This string corresponds to attributes of the database connection
|
|
features class. See :class:`~django.db.backends.BaseDatabaseFeatures`
|
|
class for a full list of database features that can be used as a basis
|
|
for skipping tests.
|
|
|
|
.. function:: skipIfDBFeature(feature_name_string)
|
|
|
|
Skip the decorated test if the named database feature is supported.
|
|
|
|
For example, the following test will not be executed if the database
|
|
supports transactions (e.g., it would *not* run under PostgreSQL, but
|
|
it would under MySQL with MyISAM tables)::
|
|
|
|
class MyTests(TestCase):
|
|
@skipIfDBFeature('supports_transactions')
|
|
def test_transaction_behavior(self):
|
|
# ... conditional test code
|
|
|
|
.. function:: skipUnlessDBFeature(feature_name_string)
|
|
|
|
Skip the decorated test if the named database feature is *not*
|
|
supported.
|
|
|
|
For example, the following test will only be executed if the database
|
|
supports transactions (e.g., it would run under PostgreSQL, but *not*
|
|
under MySQL with MyISAM tables)::
|
|
|
|
class MyTests(TestCase):
|
|
@skipUnlessDBFeature('supports_transactions')
|
|
def test_transaction_behavior(self):
|
|
# ... conditional test code
|
|
|
|
Live test server
|
|
----------------
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
.. currentmodule:: django.test
|
|
|
|
.. class:: LiveServerTestCase()
|
|
|
|
``LiveServerTestCase`` does basically the same as
|
|
:class:`~django.test.TransactionTestCase` with one extra feature: it launches a
|
|
live Django server in the background on setup, and shuts it down on teardown.
|
|
This allows the use of automated test clients other than the
|
|
:ref:`Django dummy client <test-client>` such as, for example, the Selenium_
|
|
client, to execute a series of functional tests inside a browser and simulate a
|
|
real user's actions.
|
|
|
|
By default the live server's address is `'localhost:8081'` and the full URL
|
|
can be accessed during the tests with ``self.live_server_url``. If you'd like
|
|
to change the default address (in the case, for example, where the 8081 port is
|
|
already taken) then you may pass a different one to the :djadmin:`test` command
|
|
via the :djadminopt:`--liveserver` option, for example:
|
|
|
|
.. code-block:: bash
|
|
|
|
./manage.py test --liveserver=localhost:8082
|
|
|
|
Another way of changing the default server address is by setting the
|
|
`DJANGO_LIVE_TEST_SERVER_ADDRESS` environment variable somewhere in your
|
|
code (for example, in a :ref:`custom test runner<topics-testing-test_runner>`):
|
|
|
|
.. code-block:: python
|
|
|
|
import os
|
|
os.environ['DJANGO_LIVE_TEST_SERVER_ADDRESS'] = 'localhost:8082'
|
|
|
|
In the case where the tests are run by multiple processes in parallel (for
|
|
example, in the context of several simultaneous `continuous integration`_
|
|
builds), the processes will compete for the same address, and therefore your
|
|
tests might randomly fail with an "Address already in use" error. To avoid this
|
|
problem, you can pass a comma-separated list of ports or ranges of ports (at
|
|
least as many as the number of potential parallel processes). For example:
|
|
|
|
.. code-block:: bash
|
|
|
|
./manage.py test --liveserver=localhost:8082,8090-8100,9000-9200,7041
|
|
|
|
Then, during test execution, each new live test server will try every specified
|
|
port until it finds one that is free and takes it.
|
|
|
|
.. _continuous integration: http://en.wikipedia.org/wiki/Continuous_integration
|
|
|
|
To demonstrate how to use ``LiveServerTestCase``, let's write a simple Selenium
|
|
test. First of all, you need to install the `selenium package`_ into your
|
|
Python path:
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install selenium
|
|
|
|
Then, add a ``LiveServerTestCase``-based test to your app's tests module
|
|
(for example: ``myapp/tests.py``). The code for this test may look as follows:
|
|
|
|
.. code-block:: python
|
|
|
|
from django.test import LiveServerTestCase
|
|
from selenium.webdriver.firefox.webdriver import WebDriver
|
|
|
|
class MySeleniumTests(LiveServerTestCase):
|
|
fixtures = ['user-data.json']
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.selenium = WebDriver()
|
|
super(MySeleniumTests, cls).setUpClass()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
cls.selenium.quit()
|
|
super(MySeleniumTests, cls).tearDownClass()
|
|
|
|
def test_login(self):
|
|
self.selenium.get('%s%s' % (self.live_server_url, '/login/'))
|
|
username_input = self.selenium.find_element_by_name("username")
|
|
username_input.send_keys('myuser')
|
|
password_input = self.selenium.find_element_by_name("password")
|
|
password_input.send_keys('secret')
|
|
self.selenium.find_element_by_xpath('//input[@value="Log in"]').click()
|
|
|
|
Finally, you may run the test as follows:
|
|
|
|
.. code-block:: bash
|
|
|
|
./manage.py test myapp.MySeleniumTests.test_login
|
|
|
|
This example will automatically open Firefox then go to the login page, enter
|
|
the credentials and press the "Log in" button. Selenium offers other drivers in
|
|
case you do not have Firefox installed or wish to use another browser. The
|
|
example above is just a tiny fraction of what the Selenium client can do; check
|
|
out the `full reference`_ for more details.
|
|
|
|
.. _Selenium: http://seleniumhq.org/
|
|
.. _selenium package: http://pypi.python.org/pypi/selenium
|
|
.. _full reference: http://selenium-python.readthedocs.org/en/latest/api.html
|
|
.. _Firefox: http://www.mozilla.com/firefox/
|
|
|
|
.. note::
|
|
|
|
``LiveServerTestCase`` makes use of the :doc:`staticfiles contrib app
|
|
</howto/static-files>` so you'll need to have your project configured
|
|
accordingly (in particular by setting :setting:`STATIC_URL`).
|
|
|
|
.. note::
|
|
|
|
When using an in-memory SQLite database to run the tests, the same database
|
|
connection will be shared by two threads in parallel: the thread in which
|
|
the live server is run and the thread in which the test case is run. It's
|
|
important to prevent simultaneous database queries via this shared
|
|
connection by the two threads, as that may sometimes randomly cause the
|
|
tests to fail. So you need to ensure that the two threads don't access the
|
|
database at the same time. In particular, this means that in some cases
|
|
(for example, just after clicking a link or submitting a form), you might
|
|
need to check that a response is received by Selenium and that the next
|
|
page is loaded before proceeding with further test execution.
|
|
Do this, for example, by making Selenium wait until the `<body>` HTML tag
|
|
is found in the response (requires Selenium > 2.13):
|
|
|
|
.. code-block:: python
|
|
|
|
def test_login(self):
|
|
from selenium.webdriver.support.wait import WebDriverWait
|
|
...
|
|
self.selenium.find_element_by_xpath('//input[@value="Log in"]').click()
|
|
# Wait until the response is received
|
|
WebDriverWait(self.selenium, timeout).until(
|
|
lambda driver: driver.find_element_by_tag_name('body'))
|
|
|
|
The tricky thing here is that there's really no such thing as a "page load,"
|
|
especially in modern Web apps that generate HTML dynamically after the
|
|
server generates the initial document. So, simply checking for the presence
|
|
of `<body>` in the response might not necessarily be appropriate for all
|
|
use cases. Please refer to the `Selenium FAQ`_ and
|
|
`Selenium documentation`_ for more information.
|
|
|
|
.. _Selenium FAQ: http://code.google.com/p/selenium/wiki/FrequentlyAskedQuestions#Q:_WebDriver_fails_to_find_elements_/_Does_not_block_on_page_loa
|
|
.. _Selenium documentation: http://seleniumhq.org/docs/04_webdriver_advanced.html#explicit-waits
|
|
|
|
Using different testing frameworks
|
|
==================================
|
|
|
|
Clearly, :mod:`doctest` and :mod:`unittest` are not the only Python testing
|
|
frameworks. While Django doesn't provide explicit support for alternative
|
|
frameworks, it does provide a way to invoke tests constructed for an
|
|
alternative framework as if they were normal Django tests.
|
|
|
|
When you run ``./manage.py test``, Django looks at the :setting:`TEST_RUNNER`
|
|
setting to determine what to do. By default, :setting:`TEST_RUNNER` points to
|
|
``'django.test.simple.DjangoTestSuiteRunner'``. This class defines the default Django
|
|
testing behavior. This behavior involves:
|
|
|
|
#. Performing global pre-test setup.
|
|
|
|
#. Looking for unit tests and doctests in the ``models.py`` and
|
|
``tests.py`` files in each installed application.
|
|
|
|
#. Creating the test databases.
|
|
|
|
#. Running ``syncdb`` to install models and initial data into the test
|
|
databases.
|
|
|
|
#. Running the unit tests and doctests that are found.
|
|
|
|
#. Destroying the test databases.
|
|
|
|
#. Performing global post-test teardown.
|
|
|
|
If you define your own test runner class and point :setting:`TEST_RUNNER` at
|
|
that class, Django will execute your test runner whenever you run
|
|
``./manage.py test``. In this way, it is possible to use any test framework
|
|
that can be executed from Python code, or to modify the Django test execution
|
|
process to satisfy whatever testing requirements you may have.
|
|
|
|
.. _topics-testing-test_runner:
|
|
|
|
Defining a test runner
|
|
----------------------
|
|
|
|
.. currentmodule:: django.test.simple
|
|
|
|
A test runner is a class defining a ``run_tests()`` method. Django ships
|
|
with a ``DjangoTestSuiteRunner`` class that defines the default Django
|
|
testing behavior. This class defines the ``run_tests()`` entry point,
|
|
plus a selection of other methods that are used to by ``run_tests()`` to
|
|
set up, execute and tear down the test suite.
|
|
|
|
.. class:: DjangoTestSuiteRunner(verbosity=1, interactive=True, failfast=True, **kwargs)
|
|
|
|
``verbosity`` determines the amount of notification and debug information
|
|
that will be printed to the console; ``0`` is no output, ``1`` is normal
|
|
output, and ``2`` is verbose output.
|
|
|
|
If ``interactive`` is ``True``, the test suite has permission to ask the
|
|
user for instructions when the test suite is executed. An example of this
|
|
behavior would be asking for permission to delete an existing test
|
|
database. If ``interactive`` is ``False``, the test suite must be able to
|
|
run without any manual intervention.
|
|
|
|
If ``failfast`` is ``True``, the test suite will stop running after the
|
|
first test failure is detected.
|
|
|
|
Django will, from time to time, extend the capabilities of
|
|
the test runner by adding new arguments. The ``**kwargs`` declaration
|
|
allows for this expansion. If you subclass ``DjangoTestSuiteRunner`` or
|
|
write your own test runner, ensure accept and handle the ``**kwargs``
|
|
parameter.
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
Your test runner may also define additional command-line options.
|
|
If you add an ``option_list`` attribute to a subclassed test runner,
|
|
those options will be added to the list of command-line options that
|
|
the :djadmin:`test` command can use.
|
|
|
|
Attributes
|
|
~~~~~~~~~~
|
|
|
|
.. attribute:: DjangoTestSuiteRunner.option_list
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
This is the tuple of ``optparse`` options which will be fed into the
|
|
management command's ``OptionParser`` for parsing arguments. See the
|
|
documentation for Python's ``optparse`` module for more details.
|
|
|
|
Methods
|
|
~~~~~~~
|
|
|
|
.. method:: DjangoTestSuiteRunner.run_tests(test_labels, extra_tests=None, **kwargs)
|
|
|
|
Run the test suite.
|
|
|
|
``test_labels`` is a list of strings describing the tests to be run. A test
|
|
label can take one of three forms:
|
|
|
|
* ``app.TestCase.test_method`` -- Run a single test method in a test
|
|
case.
|
|
* ``app.TestCase`` -- Run all the test methods in a test case.
|
|
* ``app`` -- Search for and run all tests in the named application.
|
|
|
|
If ``test_labels`` has a value of ``None``, the test runner should run
|
|
search for tests in all the applications in :setting:`INSTALLED_APPS`.
|
|
|
|
``extra_tests`` is a list of extra ``TestCase`` instances to add to the
|
|
suite that is executed by the test runner. These extra tests are run
|
|
in addition to those discovered in the modules listed in ``test_labels``.
|
|
|
|
This method should return the number of tests that failed.
|
|
|
|
.. method:: DjangoTestSuiteRunner.setup_test_environment(**kwargs)
|
|
|
|
Sets up the test environment ready for testing.
|
|
|
|
.. method:: DjangoTestSuiteRunner.build_suite(test_labels, extra_tests=None, **kwargs)
|
|
|
|
Constructs a test suite that matches the test labels provided.
|
|
|
|
``test_labels`` is a list of strings describing the tests to be run. A test
|
|
label can take one of three forms:
|
|
|
|
* ``app.TestCase.test_method`` -- Run a single test method in a test
|
|
case.
|
|
* ``app.TestCase`` -- Run all the test methods in a test case.
|
|
* ``app`` -- Search for and run all tests in the named application.
|
|
|
|
If ``test_labels`` has a value of ``None``, the test runner should run
|
|
search for tests in all the applications in :setting:`INSTALLED_APPS`.
|
|
|
|
``extra_tests`` is a list of extra ``TestCase`` instances to add to the
|
|
suite that is executed by the test runner. These extra tests are run
|
|
in addition to those discovered in the modules listed in ``test_labels``.
|
|
|
|
Returns a ``TestSuite`` instance ready to be run.
|
|
|
|
.. method:: DjangoTestSuiteRunner.setup_databases(**kwargs)
|
|
|
|
Creates the test databases.
|
|
|
|
Returns a data structure that provides enough detail to undo the changes
|
|
that have been made. This data will be provided to the ``teardown_databases()``
|
|
function at the conclusion of testing.
|
|
|
|
.. method:: DjangoTestSuiteRunner.run_suite(suite, **kwargs)
|
|
|
|
Runs the test suite.
|
|
|
|
Returns the result produced by the running the test suite.
|
|
|
|
.. method:: DjangoTestSuiteRunner.teardown_databases(old_config, **kwargs)
|
|
|
|
Destroys the test databases, restoring pre-test conditions.
|
|
|
|
``old_config`` is a data structure defining the changes in the
|
|
database configuration that need to be reversed. It is the return
|
|
value of the ``setup_databases()`` method.
|
|
|
|
.. method:: DjangoTestSuiteRunner.teardown_test_environment(**kwargs)
|
|
|
|
Restores the pre-test environment.
|
|
|
|
.. method:: DjangoTestSuiteRunner.suite_result(suite, result, **kwargs)
|
|
|
|
Computes and returns a return code based on a test suite, and the result
|
|
from that test suite.
|
|
|
|
|
|
Testing utilities
|
|
-----------------
|
|
|
|
.. module:: django.test.utils
|
|
:synopsis: Helpers to write custom test runners.
|
|
|
|
To assist in the creation of your own test runner, Django provides a number of
|
|
utility methods in the ``django.test.utils`` module.
|
|
|
|
.. function:: setup_test_environment()
|
|
|
|
Performs any global pre-test setup, such as the installing the
|
|
instrumentation of the template rendering system and setting up
|
|
the dummy email outbox.
|
|
|
|
.. function:: teardown_test_environment()
|
|
|
|
Performs any global post-test teardown, such as removing the black
|
|
magic hooks into the template system and restoring normal email
|
|
services.
|
|
|
|
.. currentmodule:: django.db.connection.creation
|
|
|
|
The creation module of the database backend (``connection.creation``)
|
|
also provides some utilities that can be useful during testing.
|
|
|
|
.. function:: create_test_db([verbosity=1, autoclobber=False])
|
|
|
|
Creates a new test database and runs ``syncdb`` against it.
|
|
|
|
``verbosity`` has the same behavior as in ``run_tests()``.
|
|
|
|
``autoclobber`` describes the behavior that will occur if a
|
|
database with the same name as the test database is discovered:
|
|
|
|
* If ``autoclobber`` is ``False``, the user will be asked to
|
|
approve destroying the existing database. ``sys.exit`` is
|
|
called if the user does not approve.
|
|
|
|
* If autoclobber is ``True``, the database will be destroyed
|
|
without consulting the user.
|
|
|
|
Returns the name of the test database that it created.
|
|
|
|
``create_test_db()`` has the side effect of modifying the value of
|
|
:setting:`NAME` in :setting:`DATABASES` to match the name of the test
|
|
database.
|
|
|
|
.. function:: destroy_test_db(old_database_name, [verbosity=1])
|
|
|
|
Destroys the database whose name is the value of :setting:`NAME` in
|
|
:setting:`DATABASES`, and sets :setting:`NAME` to the value of
|
|
``old_database_name``.
|
|
|
|
The ``verbosity`` argument has the same behavior as for
|
|
:class:`~django.test.simple.DjangoTestSuiteRunner`.
|