mirror of
https://github.com/django/django.git
synced 2025-01-10 02:16:08 +00:00
858 lines
43 KiB
Python
858 lines
43 KiB
Python
import datetime
|
|
from unittest import mock, skipIf, skipUnless
|
|
|
|
from django.core.exceptions import FieldError
|
|
from django.db import NotSupportedError, connection
|
|
from django.db.models import (
|
|
F, Func, OuterRef, Q, RowRange, Subquery, Value, ValueRange, Window,
|
|
WindowFrame,
|
|
)
|
|
from django.db.models.aggregates import Avg, Max, Min, Sum
|
|
from django.db.models.functions import (
|
|
CumeDist, DenseRank, ExtractYear, FirstValue, Lag, LastValue, Lead,
|
|
NthValue, Ntile, PercentRank, Rank, RowNumber, Upper,
|
|
)
|
|
from django.test import SimpleTestCase, TestCase, skipUnlessDBFeature
|
|
|
|
from .models import Employee
|
|
|
|
|
|
@skipUnlessDBFeature('supports_over_clause')
|
|
class WindowFunctionTests(TestCase):
|
|
@classmethod
|
|
def setUpTestData(cls):
|
|
Employee.objects.bulk_create([
|
|
Employee(name=e[0], salary=e[1], department=e[2], hire_date=e[3], age=e[4])
|
|
for e in [
|
|
('Jones', 45000, 'Accounting', datetime.datetime(2005, 11, 1), 20),
|
|
('Williams', 37000, 'Accounting', datetime.datetime(2009, 6, 1), 20),
|
|
('Jenson', 45000, 'Accounting', datetime.datetime(2008, 4, 1), 20),
|
|
('Adams', 50000, 'Accounting', datetime.datetime(2013, 7, 1), 50),
|
|
('Smith', 55000, 'Sales', datetime.datetime(2007, 6, 1), 30),
|
|
('Brown', 53000, 'Sales', datetime.datetime(2009, 9, 1), 30),
|
|
('Johnson', 40000, 'Marketing', datetime.datetime(2012, 3, 1), 30),
|
|
('Smith', 38000, 'Marketing', datetime.datetime(2009, 10, 1), 20),
|
|
('Wilkinson', 60000, 'IT', datetime.datetime(2011, 3, 1), 40),
|
|
('Moore', 34000, 'IT', datetime.datetime(2013, 8, 1), 40),
|
|
('Miller', 100000, 'Management', datetime.datetime(2005, 6, 1), 40),
|
|
('Johnson', 80000, 'Management', datetime.datetime(2005, 7, 1), 50),
|
|
]
|
|
])
|
|
|
|
def test_dense_rank(self):
|
|
qs = Employee.objects.annotate(rank=Window(
|
|
expression=DenseRank(),
|
|
order_by=ExtractYear(F('hire_date')).asc(),
|
|
))
|
|
self.assertQuerysetEqual(qs, [
|
|
('Jones', 45000, 'Accounting', datetime.date(2005, 11, 1), 1),
|
|
('Miller', 100000, 'Management', datetime.date(2005, 6, 1), 1),
|
|
('Johnson', 80000, 'Management', datetime.date(2005, 7, 1), 1),
|
|
('Smith', 55000, 'Sales', datetime.date(2007, 6, 1), 2),
|
|
('Jenson', 45000, 'Accounting', datetime.date(2008, 4, 1), 3),
|
|
('Smith', 38000, 'Marketing', datetime.date(2009, 10, 1), 4),
|
|
('Brown', 53000, 'Sales', datetime.date(2009, 9, 1), 4),
|
|
('Williams', 37000, 'Accounting', datetime.date(2009, 6, 1), 4),
|
|
('Wilkinson', 60000, 'IT', datetime.date(2011, 3, 1), 5),
|
|
('Johnson', 40000, 'Marketing', datetime.date(2012, 3, 1), 6),
|
|
('Moore', 34000, 'IT', datetime.date(2013, 8, 1), 7),
|
|
('Adams', 50000, 'Accounting', datetime.date(2013, 7, 1), 7),
|
|
], lambda entry: (entry.name, entry.salary, entry.department, entry.hire_date, entry.rank), ordered=False)
|
|
|
|
def test_department_salary(self):
|
|
qs = Employee.objects.annotate(department_sum=Window(
|
|
expression=Sum('salary'),
|
|
partition_by=F('department'),
|
|
order_by=[F('hire_date').asc()],
|
|
)).order_by('department', 'department_sum')
|
|
self.assertQuerysetEqual(qs, [
|
|
('Jones', 'Accounting', 45000, 45000),
|
|
('Jenson', 'Accounting', 45000, 90000),
|
|
('Williams', 'Accounting', 37000, 127000),
|
|
('Adams', 'Accounting', 50000, 177000),
|
|
('Wilkinson', 'IT', 60000, 60000),
|
|
('Moore', 'IT', 34000, 94000),
|
|
('Miller', 'Management', 100000, 100000),
|
|
('Johnson', 'Management', 80000, 180000),
|
|
('Smith', 'Marketing', 38000, 38000),
|
|
('Johnson', 'Marketing', 40000, 78000),
|
|
('Smith', 'Sales', 55000, 55000),
|
|
('Brown', 'Sales', 53000, 108000),
|
|
], lambda entry: (entry.name, entry.department, entry.salary, entry.department_sum))
|
|
|
|
def test_rank(self):
|
|
"""
|
|
Rank the employees based on the year they're were hired. Since there
|
|
are multiple employees hired in different years, this will contain
|
|
gaps.
|
|
"""
|
|
qs = Employee.objects.annotate(rank=Window(
|
|
expression=Rank(),
|
|
order_by=ExtractYear(F('hire_date')).asc(),
|
|
))
|
|
self.assertQuerysetEqual(qs, [
|
|
('Jones', 45000, 'Accounting', datetime.date(2005, 11, 1), 1),
|
|
('Miller', 100000, 'Management', datetime.date(2005, 6, 1), 1),
|
|
('Johnson', 80000, 'Management', datetime.date(2005, 7, 1), 1),
|
|
('Smith', 55000, 'Sales', datetime.date(2007, 6, 1), 4),
|
|
('Jenson', 45000, 'Accounting', datetime.date(2008, 4, 1), 5),
|
|
('Smith', 38000, 'Marketing', datetime.date(2009, 10, 1), 6),
|
|
('Brown', 53000, 'Sales', datetime.date(2009, 9, 1), 6),
|
|
('Williams', 37000, 'Accounting', datetime.date(2009, 6, 1), 6),
|
|
('Wilkinson', 60000, 'IT', datetime.date(2011, 3, 1), 9),
|
|
('Johnson', 40000, 'Marketing', datetime.date(2012, 3, 1), 10),
|
|
('Moore', 34000, 'IT', datetime.date(2013, 8, 1), 11),
|
|
('Adams', 50000, 'Accounting', datetime.date(2013, 7, 1), 11),
|
|
], lambda entry: (entry.name, entry.salary, entry.department, entry.hire_date, entry.rank), ordered=False)
|
|
|
|
def test_row_number(self):
|
|
"""
|
|
The row number window function computes the number based on the order
|
|
in which the tuples were inserted. Depending on the backend,
|
|
|
|
Oracle requires an ordering-clause in the Window expression.
|
|
"""
|
|
qs = Employee.objects.annotate(row_number=Window(
|
|
expression=RowNumber(),
|
|
order_by=F('pk').asc(),
|
|
)).order_by('pk')
|
|
self.assertQuerysetEqual(qs, [
|
|
('Jones', 'Accounting', 1),
|
|
('Williams', 'Accounting', 2),
|
|
('Jenson', 'Accounting', 3),
|
|
('Adams', 'Accounting', 4),
|
|
('Smith', 'Sales', 5),
|
|
('Brown', 'Sales', 6),
|
|
('Johnson', 'Marketing', 7),
|
|
('Smith', 'Marketing', 8),
|
|
('Wilkinson', 'IT', 9),
|
|
('Moore', 'IT', 10),
|
|
('Miller', 'Management', 11),
|
|
('Johnson', 'Management', 12),
|
|
], lambda entry: (entry.name, entry.department, entry.row_number))
|
|
|
|
@skipIf(connection.vendor == 'oracle', "Oracle requires ORDER BY in row_number, ANSI:SQL doesn't")
|
|
def test_row_number_no_ordering(self):
|
|
"""
|
|
The row number window function computes the number based on the order
|
|
in which the tuples were inserted.
|
|
"""
|
|
# Add a default ordering for consistent results across databases.
|
|
qs = Employee.objects.annotate(row_number=Window(
|
|
expression=RowNumber(),
|
|
)).order_by('pk')
|
|
self.assertQuerysetEqual(qs, [
|
|
('Jones', 'Accounting', 1),
|
|
('Williams', 'Accounting', 2),
|
|
('Jenson', 'Accounting', 3),
|
|
('Adams', 'Accounting', 4),
|
|
('Smith', 'Sales', 5),
|
|
('Brown', 'Sales', 6),
|
|
('Johnson', 'Marketing', 7),
|
|
('Smith', 'Marketing', 8),
|
|
('Wilkinson', 'IT', 9),
|
|
('Moore', 'IT', 10),
|
|
('Miller', 'Management', 11),
|
|
('Johnson', 'Management', 12),
|
|
], lambda entry: (entry.name, entry.department, entry.row_number))
|
|
|
|
def test_avg_salary_department(self):
|
|
qs = Employee.objects.annotate(avg_salary=Window(
|
|
expression=Avg('salary'),
|
|
order_by=F('department').asc(),
|
|
partition_by='department',
|
|
)).order_by('department', '-salary', 'name')
|
|
self.assertQuerysetEqual(qs, [
|
|
('Adams', 50000, 'Accounting', 44250.00),
|
|
('Jenson', 45000, 'Accounting', 44250.00),
|
|
('Jones', 45000, 'Accounting', 44250.00),
|
|
('Williams', 37000, 'Accounting', 44250.00),
|
|
('Wilkinson', 60000, 'IT', 47000.00),
|
|
('Moore', 34000, 'IT', 47000.00),
|
|
('Miller', 100000, 'Management', 90000.00),
|
|
('Johnson', 80000, 'Management', 90000.00),
|
|
('Johnson', 40000, 'Marketing', 39000.00),
|
|
('Smith', 38000, 'Marketing', 39000.00),
|
|
('Smith', 55000, 'Sales', 54000.00),
|
|
('Brown', 53000, 'Sales', 54000.00),
|
|
], transform=lambda row: (row.name, row.salary, row.department, row.avg_salary))
|
|
|
|
def test_lag(self):
|
|
"""
|
|
Compute the difference between an employee's salary and the next
|
|
highest salary in the employee's department. Return None if the
|
|
employee has the lowest salary.
|
|
"""
|
|
qs = Employee.objects.annotate(lag=Window(
|
|
expression=Lag(expression='salary', offset=1),
|
|
partition_by=F('department'),
|
|
order_by=[F('salary').asc(), F('name').asc()],
|
|
)).order_by('department', F('salary').asc(), F('name').asc())
|
|
self.assertQuerysetEqual(qs, [
|
|
('Williams', 37000, 'Accounting', None),
|
|
('Jenson', 45000, 'Accounting', 37000),
|
|
('Jones', 45000, 'Accounting', 45000),
|
|
('Adams', 50000, 'Accounting', 45000),
|
|
('Moore', 34000, 'IT', None),
|
|
('Wilkinson', 60000, 'IT', 34000),
|
|
('Johnson', 80000, 'Management', None),
|
|
('Miller', 100000, 'Management', 80000),
|
|
('Smith', 38000, 'Marketing', None),
|
|
('Johnson', 40000, 'Marketing', 38000),
|
|
('Brown', 53000, 'Sales', None),
|
|
('Smith', 55000, 'Sales', 53000),
|
|
], transform=lambda row: (row.name, row.salary, row.department, row.lag))
|
|
|
|
def test_first_value(self):
|
|
qs = Employee.objects.annotate(first_value=Window(
|
|
expression=FirstValue('salary'),
|
|
partition_by=F('department'),
|
|
order_by=F('hire_date').asc(),
|
|
)).order_by('department', 'hire_date')
|
|
self.assertQuerysetEqual(qs, [
|
|
('Jones', 45000, 'Accounting', datetime.date(2005, 11, 1), 45000),
|
|
('Jenson', 45000, 'Accounting', datetime.date(2008, 4, 1), 45000),
|
|
('Williams', 37000, 'Accounting', datetime.date(2009, 6, 1), 45000),
|
|
('Adams', 50000, 'Accounting', datetime.date(2013, 7, 1), 45000),
|
|
('Wilkinson', 60000, 'IT', datetime.date(2011, 3, 1), 60000),
|
|
('Moore', 34000, 'IT', datetime.date(2013, 8, 1), 60000),
|
|
('Miller', 100000, 'Management', datetime.date(2005, 6, 1), 100000),
|
|
('Johnson', 80000, 'Management', datetime.date(2005, 7, 1), 100000),
|
|
('Smith', 38000, 'Marketing', datetime.date(2009, 10, 1), 38000),
|
|
('Johnson', 40000, 'Marketing', datetime.date(2012, 3, 1), 38000),
|
|
('Smith', 55000, 'Sales', datetime.date(2007, 6, 1), 55000),
|
|
('Brown', 53000, 'Sales', datetime.date(2009, 9, 1), 55000),
|
|
], lambda row: (row.name, row.salary, row.department, row.hire_date, row.first_value))
|
|
|
|
def test_last_value(self):
|
|
qs = Employee.objects.annotate(last_value=Window(
|
|
expression=LastValue('hire_date'),
|
|
partition_by=F('department'),
|
|
order_by=F('hire_date').asc(),
|
|
))
|
|
self.assertQuerysetEqual(qs, [
|
|
('Adams', 'Accounting', datetime.date(2013, 7, 1), 50000, datetime.date(2013, 7, 1)),
|
|
('Jenson', 'Accounting', datetime.date(2008, 4, 1), 45000, datetime.date(2008, 4, 1)),
|
|
('Jones', 'Accounting', datetime.date(2005, 11, 1), 45000, datetime.date(2005, 11, 1)),
|
|
('Williams', 'Accounting', datetime.date(2009, 6, 1), 37000, datetime.date(2009, 6, 1)),
|
|
('Moore', 'IT', datetime.date(2013, 8, 1), 34000, datetime.date(2013, 8, 1)),
|
|
('Wilkinson', 'IT', datetime.date(2011, 3, 1), 60000, datetime.date(2011, 3, 1)),
|
|
('Miller', 'Management', datetime.date(2005, 6, 1), 100000, datetime.date(2005, 6, 1)),
|
|
('Johnson', 'Management', datetime.date(2005, 7, 1), 80000, datetime.date(2005, 7, 1)),
|
|
('Johnson', 'Marketing', datetime.date(2012, 3, 1), 40000, datetime.date(2012, 3, 1)),
|
|
('Smith', 'Marketing', datetime.date(2009, 10, 1), 38000, datetime.date(2009, 10, 1)),
|
|
('Brown', 'Sales', datetime.date(2009, 9, 1), 53000, datetime.date(2009, 9, 1)),
|
|
('Smith', 'Sales', datetime.date(2007, 6, 1), 55000, datetime.date(2007, 6, 1)),
|
|
], transform=lambda row: (row.name, row.department, row.hire_date, row.salary, row.last_value), ordered=False)
|
|
|
|
def test_function_list_of_values(self):
|
|
qs = Employee.objects.annotate(lead=Window(
|
|
expression=Lead(expression='salary'),
|
|
order_by=[F('hire_date').asc(), F('name').desc()],
|
|
partition_by='department',
|
|
)).values_list('name', 'salary', 'department', 'hire_date', 'lead') \
|
|
.order_by('department', F('hire_date').asc(), F('name').desc())
|
|
self.assertNotIn('GROUP BY', str(qs.query))
|
|
self.assertSequenceEqual(qs, [
|
|
('Jones', 45000, 'Accounting', datetime.date(2005, 11, 1), 45000),
|
|
('Jenson', 45000, 'Accounting', datetime.date(2008, 4, 1), 37000),
|
|
('Williams', 37000, 'Accounting', datetime.date(2009, 6, 1), 50000),
|
|
('Adams', 50000, 'Accounting', datetime.date(2013, 7, 1), None),
|
|
('Wilkinson', 60000, 'IT', datetime.date(2011, 3, 1), 34000),
|
|
('Moore', 34000, 'IT', datetime.date(2013, 8, 1), None),
|
|
('Miller', 100000, 'Management', datetime.date(2005, 6, 1), 80000),
|
|
('Johnson', 80000, 'Management', datetime.date(2005, 7, 1), None),
|
|
('Smith', 38000, 'Marketing', datetime.date(2009, 10, 1), 40000),
|
|
('Johnson', 40000, 'Marketing', datetime.date(2012, 3, 1), None),
|
|
('Smith', 55000, 'Sales', datetime.date(2007, 6, 1), 53000),
|
|
('Brown', 53000, 'Sales', datetime.date(2009, 9, 1), None),
|
|
])
|
|
|
|
def test_min_department(self):
|
|
"""An alternative way to specify a query for FirstValue."""
|
|
qs = Employee.objects.annotate(min_salary=Window(
|
|
expression=Min('salary'),
|
|
partition_by=F('department'),
|
|
order_by=[F('salary').asc(), F('name').asc()]
|
|
)).order_by('department', 'salary', 'name')
|
|
self.assertQuerysetEqual(qs, [
|
|
('Williams', 'Accounting', 37000, 37000),
|
|
('Jenson', 'Accounting', 45000, 37000),
|
|
('Jones', 'Accounting', 45000, 37000),
|
|
('Adams', 'Accounting', 50000, 37000),
|
|
('Moore', 'IT', 34000, 34000),
|
|
('Wilkinson', 'IT', 60000, 34000),
|
|
('Johnson', 'Management', 80000, 80000),
|
|
('Miller', 'Management', 100000, 80000),
|
|
('Smith', 'Marketing', 38000, 38000),
|
|
('Johnson', 'Marketing', 40000, 38000),
|
|
('Brown', 'Sales', 53000, 53000),
|
|
('Smith', 'Sales', 55000, 53000),
|
|
], lambda row: (row.name, row.department, row.salary, row.min_salary))
|
|
|
|
def test_max_per_year(self):
|
|
"""
|
|
Find the maximum salary awarded in the same year as the
|
|
employee was hired, regardless of the department.
|
|
"""
|
|
qs = Employee.objects.annotate(max_salary_year=Window(
|
|
expression=Max('salary'),
|
|
order_by=ExtractYear('hire_date').asc(),
|
|
partition_by=ExtractYear('hire_date')
|
|
)).order_by(ExtractYear('hire_date'), 'salary')
|
|
self.assertQuerysetEqual(qs, [
|
|
('Jones', 'Accounting', 45000, 2005, 100000),
|
|
('Johnson', 'Management', 80000, 2005, 100000),
|
|
('Miller', 'Management', 100000, 2005, 100000),
|
|
('Smith', 'Sales', 55000, 2007, 55000),
|
|
('Jenson', 'Accounting', 45000, 2008, 45000),
|
|
('Williams', 'Accounting', 37000, 2009, 53000),
|
|
('Smith', 'Marketing', 38000, 2009, 53000),
|
|
('Brown', 'Sales', 53000, 2009, 53000),
|
|
('Wilkinson', 'IT', 60000, 2011, 60000),
|
|
('Johnson', 'Marketing', 40000, 2012, 40000),
|
|
('Moore', 'IT', 34000, 2013, 50000),
|
|
('Adams', 'Accounting', 50000, 2013, 50000),
|
|
], lambda row: (row.name, row.department, row.salary, row.hire_date.year, row.max_salary_year))
|
|
|
|
def test_cume_dist(self):
|
|
"""
|
|
Compute the cumulative distribution for the employees based on the
|
|
salary in increasing order. Equal to rank/total number of rows (12).
|
|
"""
|
|
qs = Employee.objects.annotate(cume_dist=Window(
|
|
expression=CumeDist(),
|
|
order_by=F('salary').asc(),
|
|
)).order_by('salary', 'name')
|
|
# Round result of cume_dist because Oracle uses greater precision.
|
|
self.assertQuerysetEqual(qs, [
|
|
('Moore', 'IT', 34000, 0.0833333333),
|
|
('Williams', 'Accounting', 37000, 0.1666666667),
|
|
('Smith', 'Marketing', 38000, 0.25),
|
|
('Johnson', 'Marketing', 40000, 0.3333333333),
|
|
('Jenson', 'Accounting', 45000, 0.5),
|
|
('Jones', 'Accounting', 45000, 0.5),
|
|
('Adams', 'Accounting', 50000, 0.5833333333),
|
|
('Brown', 'Sales', 53000, 0.6666666667),
|
|
('Smith', 'Sales', 55000, 0.75),
|
|
('Wilkinson', 'IT', 60000, 0.8333333333),
|
|
('Johnson', 'Management', 80000, 0.9166666667),
|
|
('Miller', 'Management', 100000, 1),
|
|
], lambda row: (row.name, row.department, row.salary, round(row.cume_dist, 10)))
|
|
|
|
def test_nthvalue(self):
|
|
qs = Employee.objects.annotate(
|
|
nth_value=Window(expression=NthValue(
|
|
expression='salary', nth=2),
|
|
order_by=[F('hire_date').asc(), F('name').desc()],
|
|
partition_by=F('department'),
|
|
)
|
|
).order_by('department', 'hire_date', 'name')
|
|
self.assertQuerysetEqual(qs, [
|
|
('Jones', 'Accounting', datetime.date(2005, 11, 1), 45000, None),
|
|
('Jenson', 'Accounting', datetime.date(2008, 4, 1), 45000, 45000),
|
|
('Williams', 'Accounting', datetime.date(2009, 6, 1), 37000, 45000),
|
|
('Adams', 'Accounting', datetime.date(2013, 7, 1), 50000, 45000),
|
|
('Wilkinson', 'IT', datetime.date(2011, 3, 1), 60000, None),
|
|
('Moore', 'IT', datetime.date(2013, 8, 1), 34000, 34000),
|
|
('Miller', 'Management', datetime.date(2005, 6, 1), 100000, None),
|
|
('Johnson', 'Management', datetime.date(2005, 7, 1), 80000, 80000),
|
|
('Smith', 'Marketing', datetime.date(2009, 10, 1), 38000, None),
|
|
('Johnson', 'Marketing', datetime.date(2012, 3, 1), 40000, 40000),
|
|
('Smith', 'Sales', datetime.date(2007, 6, 1), 55000, None),
|
|
('Brown', 'Sales', datetime.date(2009, 9, 1), 53000, 53000),
|
|
], lambda row: (row.name, row.department, row.hire_date, row.salary, row.nth_value))
|
|
|
|
def test_lead(self):
|
|
"""
|
|
Determine what the next person hired in the same department makes.
|
|
Because the dataset is ambiguous, the name is also part of the
|
|
ordering clause. No default is provided, so None/NULL should be
|
|
returned.
|
|
"""
|
|
qs = Employee.objects.annotate(lead=Window(
|
|
expression=Lead(expression='salary'),
|
|
order_by=[F('hire_date').asc(), F('name').desc()],
|
|
partition_by='department',
|
|
)).order_by('department', F('hire_date').asc(), F('name').desc())
|
|
self.assertQuerysetEqual(qs, [
|
|
('Jones', 45000, 'Accounting', datetime.date(2005, 11, 1), 45000),
|
|
('Jenson', 45000, 'Accounting', datetime.date(2008, 4, 1), 37000),
|
|
('Williams', 37000, 'Accounting', datetime.date(2009, 6, 1), 50000),
|
|
('Adams', 50000, 'Accounting', datetime.date(2013, 7, 1), None),
|
|
('Wilkinson', 60000, 'IT', datetime.date(2011, 3, 1), 34000),
|
|
('Moore', 34000, 'IT', datetime.date(2013, 8, 1), None),
|
|
('Miller', 100000, 'Management', datetime.date(2005, 6, 1), 80000),
|
|
('Johnson', 80000, 'Management', datetime.date(2005, 7, 1), None),
|
|
('Smith', 38000, 'Marketing', datetime.date(2009, 10, 1), 40000),
|
|
('Johnson', 40000, 'Marketing', datetime.date(2012, 3, 1), None),
|
|
('Smith', 55000, 'Sales', datetime.date(2007, 6, 1), 53000),
|
|
('Brown', 53000, 'Sales', datetime.date(2009, 9, 1), None),
|
|
], transform=lambda row: (row.name, row.salary, row.department, row.hire_date, row.lead))
|
|
|
|
def test_lead_offset(self):
|
|
"""
|
|
Determine what the person hired after someone makes. Due to
|
|
ambiguity, the name is also included in the ordering.
|
|
"""
|
|
qs = Employee.objects.annotate(lead=Window(
|
|
expression=Lead('salary', offset=2),
|
|
partition_by='department',
|
|
order_by=F('hire_date').asc(),
|
|
))
|
|
self.assertQuerysetEqual(qs, [
|
|
('Jones', 45000, 'Accounting', datetime.date(2005, 11, 1), 37000),
|
|
('Jenson', 45000, 'Accounting', datetime.date(2008, 4, 1), 50000),
|
|
('Williams', 37000, 'Accounting', datetime.date(2009, 6, 1), None),
|
|
('Adams', 50000, 'Accounting', datetime.date(2013, 7, 1), None),
|
|
('Wilkinson', 60000, 'IT', datetime.date(2011, 3, 1), None),
|
|
('Moore', 34000, 'IT', datetime.date(2013, 8, 1), None),
|
|
('Johnson', 80000, 'Management', datetime.date(2005, 7, 1), None),
|
|
('Miller', 100000, 'Management', datetime.date(2005, 6, 1), None),
|
|
('Smith', 38000, 'Marketing', datetime.date(2009, 10, 1), None),
|
|
('Johnson', 40000, 'Marketing', datetime.date(2012, 3, 1), None),
|
|
('Smith', 55000, 'Sales', datetime.date(2007, 6, 1), None),
|
|
('Brown', 53000, 'Sales', datetime.date(2009, 9, 1), None),
|
|
], transform=lambda row: (row.name, row.salary, row.department, row.hire_date, row.lead),
|
|
ordered=False
|
|
)
|
|
|
|
@skipUnlessDBFeature('supports_default_in_lead_lag')
|
|
def test_lead_default(self):
|
|
qs = Employee.objects.annotate(lead_default=Window(
|
|
expression=Lead(expression='salary', offset=5, default=60000),
|
|
partition_by=F('department'),
|
|
order_by=F('department').asc(),
|
|
))
|
|
self.assertEqual(list(qs.values_list('lead_default', flat=True).distinct()), [60000])
|
|
|
|
def test_ntile(self):
|
|
"""
|
|
Compute the group for each of the employees across the entire company,
|
|
based on how high the salary is for them. There are twelve employees
|
|
so it divides evenly into four groups.
|
|
"""
|
|
qs = Employee.objects.annotate(ntile=Window(
|
|
expression=Ntile(num_buckets=4),
|
|
order_by=F('salary').desc(),
|
|
)).order_by('ntile', '-salary', 'name')
|
|
self.assertQuerysetEqual(qs, [
|
|
('Miller', 'Management', 100000, 1),
|
|
('Johnson', 'Management', 80000, 1),
|
|
('Wilkinson', 'IT', 60000, 1),
|
|
('Smith', 'Sales', 55000, 2),
|
|
('Brown', 'Sales', 53000, 2),
|
|
('Adams', 'Accounting', 50000, 2),
|
|
('Jenson', 'Accounting', 45000, 3),
|
|
('Jones', 'Accounting', 45000, 3),
|
|
('Johnson', 'Marketing', 40000, 3),
|
|
('Smith', 'Marketing', 38000, 4),
|
|
('Williams', 'Accounting', 37000, 4),
|
|
('Moore', 'IT', 34000, 4),
|
|
], lambda x: (x.name, x.department, x.salary, x.ntile))
|
|
|
|
def test_percent_rank(self):
|
|
"""
|
|
Calculate the percentage rank of the employees across the entire
|
|
company based on salary and name (in case of ambiguity).
|
|
"""
|
|
qs = Employee.objects.annotate(percent_rank=Window(
|
|
expression=PercentRank(),
|
|
order_by=[F('salary').asc(), F('name').asc()],
|
|
)).order_by('percent_rank')
|
|
# Round to account for precision differences among databases.
|
|
self.assertQuerysetEqual(qs, [
|
|
('Moore', 'IT', 34000, 0.0),
|
|
('Williams', 'Accounting', 37000, 0.0909090909),
|
|
('Smith', 'Marketing', 38000, 0.1818181818),
|
|
('Johnson', 'Marketing', 40000, 0.2727272727),
|
|
('Jenson', 'Accounting', 45000, 0.3636363636),
|
|
('Jones', 'Accounting', 45000, 0.4545454545),
|
|
('Adams', 'Accounting', 50000, 0.5454545455),
|
|
('Brown', 'Sales', 53000, 0.6363636364),
|
|
('Smith', 'Sales', 55000, 0.7272727273),
|
|
('Wilkinson', 'IT', 60000, 0.8181818182),
|
|
('Johnson', 'Management', 80000, 0.9090909091),
|
|
('Miller', 'Management', 100000, 1.0),
|
|
], transform=lambda row: (row.name, row.department, row.salary, round(row.percent_rank, 10)))
|
|
|
|
def test_nth_returns_null(self):
|
|
"""
|
|
Find the nth row of the data set. None is returned since there are
|
|
fewer than 20 rows in the test data.
|
|
"""
|
|
qs = Employee.objects.annotate(nth_value=Window(
|
|
expression=NthValue('salary', nth=20),
|
|
order_by=F('salary').asc()
|
|
))
|
|
self.assertEqual(list(qs.values_list('nth_value', flat=True).distinct()), [None])
|
|
|
|
def test_multiple_partitioning(self):
|
|
"""
|
|
Find the maximum salary for each department for people hired in the
|
|
same year.
|
|
"""
|
|
qs = Employee.objects.annotate(max=Window(
|
|
expression=Max('salary'),
|
|
partition_by=[F('department'), ExtractYear(F('hire_date'))],
|
|
)).order_by('department', 'hire_date', 'name')
|
|
self.assertQuerysetEqual(qs, [
|
|
('Jones', 45000, 'Accounting', datetime.date(2005, 11, 1), 45000),
|
|
('Jenson', 45000, 'Accounting', datetime.date(2008, 4, 1), 45000),
|
|
('Williams', 37000, 'Accounting', datetime.date(2009, 6, 1), 37000),
|
|
('Adams', 50000, 'Accounting', datetime.date(2013, 7, 1), 50000),
|
|
('Wilkinson', 60000, 'IT', datetime.date(2011, 3, 1), 60000),
|
|
('Moore', 34000, 'IT', datetime.date(2013, 8, 1), 34000),
|
|
('Miller', 100000, 'Management', datetime.date(2005, 6, 1), 100000),
|
|
('Johnson', 80000, 'Management', datetime.date(2005, 7, 1), 100000),
|
|
('Smith', 38000, 'Marketing', datetime.date(2009, 10, 1), 38000),
|
|
('Johnson', 40000, 'Marketing', datetime.date(2012, 3, 1), 40000),
|
|
('Smith', 55000, 'Sales', datetime.date(2007, 6, 1), 55000),
|
|
('Brown', 53000, 'Sales', datetime.date(2009, 9, 1), 53000),
|
|
], transform=lambda row: (row.name, row.salary, row.department, row.hire_date, row.max))
|
|
|
|
def test_multiple_ordering(self):
|
|
"""
|
|
Accumulate the salaries over the departments based on hire_date.
|
|
If two people were hired on the same date in the same department, the
|
|
ordering clause will render a different result for those people.
|
|
"""
|
|
qs = Employee.objects.annotate(sum=Window(
|
|
expression=Sum('salary'),
|
|
partition_by='department',
|
|
order_by=[F('hire_date').asc(), F('name').asc()],
|
|
)).order_by('department', 'sum')
|
|
self.assertQuerysetEqual(qs, [
|
|
('Jones', 45000, 'Accounting', datetime.date(2005, 11, 1), 45000),
|
|
('Jenson', 45000, 'Accounting', datetime.date(2008, 4, 1), 90000),
|
|
('Williams', 37000, 'Accounting', datetime.date(2009, 6, 1), 127000),
|
|
('Adams', 50000, 'Accounting', datetime.date(2013, 7, 1), 177000),
|
|
('Wilkinson', 60000, 'IT', datetime.date(2011, 3, 1), 60000),
|
|
('Moore', 34000, 'IT', datetime.date(2013, 8, 1), 94000),
|
|
('Miller', 100000, 'Management', datetime.date(2005, 6, 1), 100000),
|
|
('Johnson', 80000, 'Management', datetime.date(2005, 7, 1), 180000),
|
|
('Smith', 38000, 'Marketing', datetime.date(2009, 10, 1), 38000),
|
|
('Johnson', 40000, 'Marketing', datetime.date(2012, 3, 1), 78000),
|
|
('Smith', 55000, 'Sales', datetime.date(2007, 6, 1), 55000),
|
|
('Brown', 53000, 'Sales', datetime.date(2009, 9, 1), 108000),
|
|
], transform=lambda row: (row.name, row.salary, row.department, row.hire_date, row.sum))
|
|
|
|
@skipUnlessDBFeature('supports_frame_range_fixed_distance')
|
|
def test_range_n_preceding_and_following(self):
|
|
qs = Employee.objects.annotate(sum=Window(
|
|
expression=Sum('salary'),
|
|
order_by=F('salary').asc(),
|
|
partition_by='department',
|
|
frame=ValueRange(start=-2, end=2),
|
|
))
|
|
self.assertIn('RANGE BETWEEN 2 PRECEDING AND 2 FOLLOWING', str(qs.query))
|
|
self.assertQuerysetEqual(qs, [
|
|
('Williams', 37000, 'Accounting', datetime.date(2009, 6, 1), 37000),
|
|
('Jones', 45000, 'Accounting', datetime.date(2005, 11, 1), 90000),
|
|
('Jenson', 45000, 'Accounting', datetime.date(2008, 4, 1), 90000),
|
|
('Adams', 50000, 'Accounting', datetime.date(2013, 7, 1), 50000),
|
|
('Brown', 53000, 'Sales', datetime.date(2009, 9, 1), 53000),
|
|
('Smith', 55000, 'Sales', datetime.date(2007, 6, 1), 55000),
|
|
('Johnson', 40000, 'Marketing', datetime.date(2012, 3, 1), 40000),
|
|
('Smith', 38000, 'Marketing', datetime.date(2009, 10, 1), 38000),
|
|
('Wilkinson', 60000, 'IT', datetime.date(2011, 3, 1), 60000),
|
|
('Moore', 34000, 'IT', datetime.date(2013, 8, 1), 34000),
|
|
('Miller', 100000, 'Management', datetime.date(2005, 6, 1), 100000),
|
|
('Johnson', 80000, 'Management', datetime.date(2005, 7, 1), 80000),
|
|
], transform=lambda row: (row.name, row.salary, row.department, row.hire_date, row.sum), ordered=False)
|
|
|
|
def test_range_unbound(self):
|
|
"""A query with RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING."""
|
|
qs = Employee.objects.annotate(sum=Window(
|
|
expression=Sum('salary'),
|
|
partition_by='age',
|
|
order_by=[F('age').asc()],
|
|
frame=ValueRange(start=None, end=None),
|
|
)).order_by('department', 'hire_date', 'name')
|
|
self.assertIn('RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING', str(qs.query))
|
|
self.assertQuerysetEqual(qs, [
|
|
('Jones', 'Accounting', 45000, datetime.date(2005, 11, 1), 165000),
|
|
('Jenson', 'Accounting', 45000, datetime.date(2008, 4, 1), 165000),
|
|
('Williams', 'Accounting', 37000, datetime.date(2009, 6, 1), 165000),
|
|
('Adams', 'Accounting', 50000, datetime.date(2013, 7, 1), 130000),
|
|
('Wilkinson', 'IT', 60000, datetime.date(2011, 3, 1), 194000),
|
|
('Moore', 'IT', 34000, datetime.date(2013, 8, 1), 194000),
|
|
('Miller', 'Management', 100000, datetime.date(2005, 6, 1), 194000),
|
|
('Johnson', 'Management', 80000, datetime.date(2005, 7, 1), 130000),
|
|
('Smith', 'Marketing', 38000, datetime.date(2009, 10, 1), 165000),
|
|
('Johnson', 'Marketing', 40000, datetime.date(2012, 3, 1), 148000),
|
|
('Smith', 'Sales', 55000, datetime.date(2007, 6, 1), 148000),
|
|
('Brown', 'Sales', 53000, datetime.date(2009, 9, 1), 148000)
|
|
], transform=lambda row: (row.name, row.department, row.salary, row.hire_date, row.sum))
|
|
|
|
@skipIf(
|
|
connection.vendor == 'sqlite' and connection.Database.sqlite_version_info < (3, 27),
|
|
'Nondeterministic failure on SQLite < 3.27.'
|
|
)
|
|
def test_subquery_row_range_rank(self):
|
|
qs = Employee.objects.annotate(
|
|
highest_avg_salary_date=Subquery(
|
|
Employee.objects.filter(
|
|
department=OuterRef('department'),
|
|
).annotate(
|
|
avg_salary=Window(
|
|
expression=Avg('salary'),
|
|
order_by=[F('hire_date').asc()],
|
|
frame=RowRange(start=-1, end=1),
|
|
),
|
|
).order_by('-avg_salary', 'hire_date').values('hire_date')[:1],
|
|
),
|
|
).order_by('department', 'name')
|
|
self.assertQuerysetEqual(qs, [
|
|
('Adams', 'Accounting', datetime.date(2005, 11, 1)),
|
|
('Jenson', 'Accounting', datetime.date(2005, 11, 1)),
|
|
('Jones', 'Accounting', datetime.date(2005, 11, 1)),
|
|
('Williams', 'Accounting', datetime.date(2005, 11, 1)),
|
|
('Moore', 'IT', datetime.date(2011, 3, 1)),
|
|
('Wilkinson', 'IT', datetime.date(2011, 3, 1)),
|
|
('Johnson', 'Management', datetime.date(2005, 6, 1)),
|
|
('Miller', 'Management', datetime.date(2005, 6, 1)),
|
|
('Johnson', 'Marketing', datetime.date(2009, 10, 1)),
|
|
('Smith', 'Marketing', datetime.date(2009, 10, 1)),
|
|
('Brown', 'Sales', datetime.date(2007, 6, 1)),
|
|
('Smith', 'Sales', datetime.date(2007, 6, 1)),
|
|
], transform=lambda row: (row.name, row.department, row.highest_avg_salary_date))
|
|
|
|
def test_row_range_rank(self):
|
|
"""
|
|
A query with ROWS BETWEEN UNBOUNDED PRECEDING AND 3 FOLLOWING.
|
|
The resulting sum is the sum of the three next (if they exist) and all
|
|
previous rows according to the ordering clause.
|
|
"""
|
|
qs = Employee.objects.annotate(sum=Window(
|
|
expression=Sum('salary'),
|
|
order_by=[F('hire_date').asc(), F('name').desc()],
|
|
frame=RowRange(start=None, end=3),
|
|
)).order_by('sum', 'hire_date')
|
|
self.assertIn('ROWS BETWEEN UNBOUNDED PRECEDING AND 3 FOLLOWING', str(qs.query))
|
|
self.assertQuerysetEqual(qs, [
|
|
('Miller', 100000, 'Management', datetime.date(2005, 6, 1), 280000),
|
|
('Johnson', 80000, 'Management', datetime.date(2005, 7, 1), 325000),
|
|
('Jones', 45000, 'Accounting', datetime.date(2005, 11, 1), 362000),
|
|
('Smith', 55000, 'Sales', datetime.date(2007, 6, 1), 415000),
|
|
('Jenson', 45000, 'Accounting', datetime.date(2008, 4, 1), 453000),
|
|
('Williams', 37000, 'Accounting', datetime.date(2009, 6, 1), 513000),
|
|
('Brown', 53000, 'Sales', datetime.date(2009, 9, 1), 553000),
|
|
('Smith', 38000, 'Marketing', datetime.date(2009, 10, 1), 603000),
|
|
('Wilkinson', 60000, 'IT', datetime.date(2011, 3, 1), 637000),
|
|
('Johnson', 40000, 'Marketing', datetime.date(2012, 3, 1), 637000),
|
|
('Adams', 50000, 'Accounting', datetime.date(2013, 7, 1), 637000),
|
|
('Moore', 34000, 'IT', datetime.date(2013, 8, 1), 637000),
|
|
], transform=lambda row: (row.name, row.salary, row.department, row.hire_date, row.sum))
|
|
|
|
@skipUnlessDBFeature('can_distinct_on_fields')
|
|
def test_distinct_window_function(self):
|
|
"""
|
|
Window functions are not aggregates, and hence a query to filter out
|
|
duplicates may be useful.
|
|
"""
|
|
qs = Employee.objects.annotate(
|
|
sum=Window(
|
|
expression=Sum('salary'),
|
|
partition_by=ExtractYear('hire_date'),
|
|
order_by=ExtractYear('hire_date')
|
|
),
|
|
year=ExtractYear('hire_date'),
|
|
).values('year', 'sum').distinct('year').order_by('year')
|
|
results = [
|
|
{'year': 2005, 'sum': 225000}, {'year': 2007, 'sum': 55000},
|
|
{'year': 2008, 'sum': 45000}, {'year': 2009, 'sum': 128000},
|
|
{'year': 2011, 'sum': 60000}, {'year': 2012, 'sum': 40000},
|
|
{'year': 2013, 'sum': 84000},
|
|
]
|
|
for idx, val in zip(range(len(results)), results):
|
|
with self.subTest(result=val):
|
|
self.assertEqual(qs[idx], val)
|
|
|
|
def test_fail_update(self):
|
|
"""Window expressions can't be used in an UPDATE statement."""
|
|
msg = (
|
|
'Window expressions are not allowed in this query (salary=<Window: '
|
|
'Max(Col(expressions_window_employee, expressions_window.Employee.salary)) '
|
|
'OVER (PARTITION BY Col(expressions_window_employee, '
|
|
'expressions_window.Employee.department))>).'
|
|
)
|
|
with self.assertRaisesMessage(FieldError, msg):
|
|
Employee.objects.filter(department='Management').update(
|
|
salary=Window(expression=Max('salary'), partition_by='department'),
|
|
)
|
|
|
|
def test_fail_insert(self):
|
|
"""Window expressions can't be used in an INSERT statement."""
|
|
msg = (
|
|
'Window expressions are not allowed in this query (salary=<Window: '
|
|
'Sum(Value(10000), order_by=OrderBy(F(pk), descending=False)) OVER ()'
|
|
)
|
|
with self.assertRaisesMessage(FieldError, msg):
|
|
Employee.objects.create(
|
|
name='Jameson', department='Management', hire_date=datetime.date(2007, 7, 1),
|
|
salary=Window(expression=Sum(Value(10000), order_by=F('pk').asc())),
|
|
)
|
|
|
|
def test_window_expression_within_subquery(self):
|
|
subquery_qs = Employee.objects.annotate(
|
|
highest=Window(FirstValue('id'), partition_by=F('department'), order_by=F('salary').desc())
|
|
).values('highest')
|
|
highest_salary = Employee.objects.filter(pk__in=subquery_qs)
|
|
self.assertSequenceEqual(highest_salary.values('department', 'salary'), [
|
|
{'department': 'Accounting', 'salary': 50000},
|
|
{'department': 'Sales', 'salary': 55000},
|
|
{'department': 'Marketing', 'salary': 40000},
|
|
{'department': 'IT', 'salary': 60000},
|
|
{'department': 'Management', 'salary': 100000}
|
|
])
|
|
|
|
def test_invalid_start_value_range(self):
|
|
msg = "start argument must be a negative integer, zero, or None, but got '3'."
|
|
with self.assertRaisesMessage(ValueError, msg):
|
|
list(Employee.objects.annotate(test=Window(
|
|
expression=Sum('salary'),
|
|
order_by=F('hire_date').asc(),
|
|
frame=ValueRange(start=3),
|
|
)))
|
|
|
|
def test_invalid_end_value_range(self):
|
|
msg = "end argument must be a positive integer, zero, or None, but got '-3'."
|
|
with self.assertRaisesMessage(ValueError, msg):
|
|
list(Employee.objects.annotate(test=Window(
|
|
expression=Sum('salary'),
|
|
order_by=F('hire_date').asc(),
|
|
frame=ValueRange(end=-3),
|
|
)))
|
|
|
|
def test_invalid_type_end_value_range(self):
|
|
msg = "end argument must be a positive integer, zero, or None, but got 'a'."
|
|
with self.assertRaisesMessage(ValueError, msg):
|
|
list(Employee.objects.annotate(test=Window(
|
|
expression=Sum('salary'),
|
|
order_by=F('hire_date').asc(),
|
|
frame=ValueRange(end='a'),
|
|
)))
|
|
|
|
def test_invalid_type_start_value_range(self):
|
|
msg = "start argument must be a negative integer, zero, or None, but got 'a'."
|
|
with self.assertRaisesMessage(ValueError, msg):
|
|
list(Employee.objects.annotate(test=Window(
|
|
expression=Sum('salary'),
|
|
frame=ValueRange(start='a'),
|
|
)))
|
|
|
|
def test_invalid_type_end_row_range(self):
|
|
msg = "end argument must be a positive integer, zero, or None, but got 'a'."
|
|
with self.assertRaisesMessage(ValueError, msg):
|
|
list(Employee.objects.annotate(test=Window(
|
|
expression=Sum('salary'),
|
|
frame=RowRange(end='a'),
|
|
)))
|
|
|
|
@skipUnless(connection.vendor == 'postgresql', 'Frame construction not allowed on PostgreSQL')
|
|
def test_postgresql_illegal_range_frame_start(self):
|
|
msg = 'PostgreSQL only supports UNBOUNDED together with PRECEDING and FOLLOWING.'
|
|
with self.assertRaisesMessage(NotSupportedError, msg):
|
|
list(Employee.objects.annotate(test=Window(
|
|
expression=Sum('salary'),
|
|
order_by=F('hire_date').asc(),
|
|
frame=ValueRange(start=-1),
|
|
)))
|
|
|
|
@skipUnless(connection.vendor == 'postgresql', 'Frame construction not allowed on PostgreSQL')
|
|
def test_postgresql_illegal_range_frame_end(self):
|
|
msg = 'PostgreSQL only supports UNBOUNDED together with PRECEDING and FOLLOWING.'
|
|
with self.assertRaisesMessage(NotSupportedError, msg):
|
|
list(Employee.objects.annotate(test=Window(
|
|
expression=Sum('salary'),
|
|
order_by=F('hire_date').asc(),
|
|
frame=ValueRange(end=1),
|
|
)))
|
|
|
|
def test_invalid_type_start_row_range(self):
|
|
msg = "start argument must be a negative integer, zero, or None, but got 'a'."
|
|
with self.assertRaisesMessage(ValueError, msg):
|
|
list(Employee.objects.annotate(test=Window(
|
|
expression=Sum('salary'),
|
|
order_by=F('hire_date').asc(),
|
|
frame=RowRange(start='a'),
|
|
)))
|
|
|
|
|
|
class WindowUnsupportedTests(TestCase):
|
|
def test_unsupported_backend(self):
|
|
msg = 'This backend does not support window expressions.'
|
|
with mock.patch.object(connection.features, 'supports_over_clause', False):
|
|
with self.assertRaisesMessage(NotSupportedError, msg):
|
|
Employee.objects.annotate(dense_rank=Window(expression=DenseRank())).get()
|
|
|
|
|
|
class NonQueryWindowTests(SimpleTestCase):
|
|
def test_window_repr(self):
|
|
self.assertEqual(
|
|
repr(Window(expression=Sum('salary'), partition_by='department')),
|
|
'<Window: Sum(F(salary)) OVER (PARTITION BY F(department))>'
|
|
)
|
|
self.assertEqual(
|
|
repr(Window(expression=Avg('salary'), order_by=F('department').asc())),
|
|
'<Window: Avg(F(salary)) OVER (ORDER BY OrderBy(F(department), descending=False))>'
|
|
)
|
|
|
|
def test_window_frame_repr(self):
|
|
self.assertEqual(
|
|
repr(RowRange(start=-1)),
|
|
'<RowRange: ROWS BETWEEN 1 PRECEDING AND UNBOUNDED FOLLOWING>'
|
|
)
|
|
self.assertEqual(
|
|
repr(ValueRange(start=None, end=1)),
|
|
'<ValueRange: RANGE BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING>'
|
|
)
|
|
self.assertEqual(
|
|
repr(ValueRange(start=0, end=0)),
|
|
'<ValueRange: RANGE BETWEEN CURRENT ROW AND CURRENT ROW>'
|
|
)
|
|
self.assertEqual(
|
|
repr(RowRange(start=0, end=0)),
|
|
'<RowRange: ROWS BETWEEN CURRENT ROW AND CURRENT ROW>'
|
|
)
|
|
|
|
def test_empty_group_by_cols(self):
|
|
window = Window(expression=Sum('pk'))
|
|
self.assertEqual(window.get_group_by_cols(), [])
|
|
self.assertFalse(window.contains_aggregate)
|
|
|
|
def test_frame_empty_group_by_cols(self):
|
|
frame = WindowFrame()
|
|
self.assertEqual(frame.get_group_by_cols(), [])
|
|
|
|
def test_frame_window_frame_notimplemented(self):
|
|
frame = WindowFrame()
|
|
msg = 'Subclasses must implement window_frame_start_end().'
|
|
with self.assertRaisesMessage(NotImplementedError, msg):
|
|
frame.window_frame_start_end(None, None, None)
|
|
|
|
def test_invalid_filter(self):
|
|
msg = 'Window is disallowed in the filter clause'
|
|
qs = Employee.objects.annotate(dense_rank=Window(expression=DenseRank()))
|
|
with self.assertRaisesMessage(NotSupportedError, msg):
|
|
qs.filter(dense_rank__gte=1)
|
|
with self.assertRaisesMessage(NotSupportedError, msg):
|
|
qs.annotate(inc_rank=F('dense_rank') + Value(1)).filter(inc_rank__gte=1)
|
|
with self.assertRaisesMessage(NotSupportedError, msg):
|
|
qs.filter(id=F('dense_rank'))
|
|
with self.assertRaisesMessage(NotSupportedError, msg):
|
|
qs.filter(id=Func('dense_rank', 2, function='div'))
|
|
with self.assertRaisesMessage(NotSupportedError, msg):
|
|
qs.annotate(total=Sum('dense_rank', filter=Q(name='Jones'))).filter(total=1)
|
|
|
|
def test_invalid_order_by(self):
|
|
msg = 'order_by must be either an Expression or a sequence of expressions'
|
|
with self.assertRaisesMessage(ValueError, msg):
|
|
Window(expression=Sum('power'), order_by='-horse')
|
|
|
|
def test_invalid_source_expression(self):
|
|
msg = "Expression 'Upper' isn't compatible with OVER clauses."
|
|
with self.assertRaisesMessage(ValueError, msg):
|
|
Window(expression=Upper('name'))
|