mirror of
https://github.com/django/django.git
synced 2025-01-12 03:15:47 +00:00
1604 lines
63 KiB
Plaintext
1604 lines
63 KiB
Plaintext
=============
|
|
Testing tools
|
|
=============
|
|
|
|
.. currentmodule:: django.test
|
|
|
|
Django provides a small set of tools that come in handy when writing tests.
|
|
|
|
.. _test-client:
|
|
|
|
The test client
|
|
---------------
|
|
|
|
The test client is a Python class that acts as a dummy Web browser, allowing
|
|
you to test your views and interact with your Django-powered application
|
|
programmatically.
|
|
|
|
Some of the things you can do with the test client are:
|
|
|
|
* Simulate GET and POST requests on a URL and observe the response --
|
|
everything from low-level HTTP (result headers and status codes) to
|
|
page content.
|
|
|
|
* See the chain of redirects (if any) and check the URL and status code at
|
|
each step.
|
|
|
|
* Test that a given request is rendered by a given Django template, with
|
|
a template context that contains certain values.
|
|
|
|
Note that the test client is not intended to be a replacement for Selenium_ or
|
|
other "in-browser" frameworks. Django's test client has a different focus. In
|
|
short:
|
|
|
|
* Use Django's test client to establish that the correct template is being
|
|
rendered and that the template is passed the correct context data.
|
|
|
|
* Use in-browser frameworks like Selenium_ to test *rendered* HTML and the
|
|
*behavior* of Web pages, namely JavaScript functionality. Django also
|
|
provides special support for those frameworks; see the section on
|
|
:class:`~django.test.LiveServerTestCase` for more details.
|
|
|
|
A comprehensive test suite should use a combination of both test types.
|
|
|
|
Overview and a quick example
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
To use the test client, instantiate ``django.test.Client`` and retrieve
|
|
Web pages::
|
|
|
|
>>> from django.test import Client
|
|
>>> c = Client()
|
|
>>> response = c.post('/login/', {'username': 'john', 'password': 'smith'})
|
|
>>> response.status_code
|
|
200
|
|
>>> response = c.get('/customer/details/')
|
|
>>> response.content
|
|
'<!DOCTYPE html...'
|
|
|
|
As this example suggests, you can instantiate ``Client`` from within a session
|
|
of the Python interactive interpreter.
|
|
|
|
Note a few important things about how the test client works:
|
|
|
|
* The test client does *not* require the Web server to be running. In fact,
|
|
it will run just fine with no Web server running at all! That's because
|
|
it avoids the overhead of HTTP and deals directly with the Django
|
|
framework. This helps make the unit tests run quickly.
|
|
|
|
* When retrieving pages, remember to specify the *path* of the URL, not the
|
|
whole domain. For example, this is correct::
|
|
|
|
>>> c.get('/login/')
|
|
|
|
This is incorrect::
|
|
|
|
>>> c.get('http://www.example.com/login/')
|
|
|
|
The test client is not capable of retrieving Web pages that are not
|
|
powered by your Django project. If you need to retrieve other Web pages,
|
|
use a Python standard library module such as :mod:`urllib` or
|
|
:mod:`urllib2`.
|
|
|
|
* To resolve URLs, the test client uses whatever URLconf is pointed-to by
|
|
your :setting:`ROOT_URLCONF` setting.
|
|
|
|
* Although the above example would work in the Python interactive
|
|
interpreter, some of the test client's functionality, notably the
|
|
template-related functionality, is only available *while tests are
|
|
running*.
|
|
|
|
The reason for this is that Django's test runner performs a bit of black
|
|
magic in order to determine which template was loaded by a given view.
|
|
This black magic (essentially a patching of Django's template system in
|
|
memory) only happens during test running.
|
|
|
|
* By default, the test client will disable any CSRF checks
|
|
performed by your site.
|
|
|
|
If, for some reason, you *want* the test client to perform CSRF
|
|
checks, you can create an instance of the test client that
|
|
enforces CSRF checks. To do this, pass in the
|
|
``enforce_csrf_checks`` argument when you construct your
|
|
client::
|
|
|
|
>>> from django.test import Client
|
|
>>> csrf_client = Client(enforce_csrf_checks=True)
|
|
|
|
Making requests
|
|
~~~~~~~~~~~~~~~
|
|
|
|
Use the ``django.test.Client`` class to make requests.
|
|
|
|
.. class:: Client(enforce_csrf_checks=False, **defaults)
|
|
|
|
It requires no arguments at time of construction. However, you can use
|
|
keywords arguments to specify some default headers. For example, this will
|
|
send a ``User-Agent`` HTTP header in each request::
|
|
|
|
>>> c = Client(HTTP_USER_AGENT='Mozilla/5.0')
|
|
|
|
The values from the ``extra`` keywords arguments passed to
|
|
:meth:`~django.test.Client.get()`,
|
|
:meth:`~django.test.Client.post()`, etc. have precedence over
|
|
the defaults passed to the class constructor.
|
|
|
|
The ``enforce_csrf_checks`` argument can be used to test CSRF
|
|
protection (see above).
|
|
|
|
Once you have a ``Client`` instance, you can call any of the following
|
|
methods:
|
|
|
|
.. method:: Client.get(path, data=None, follow=False, secure=False, **extra)
|
|
|
|
.. versionadded:: 1.7
|
|
|
|
The ``secure`` argument was added.
|
|
|
|
Makes a GET request on the provided ``path`` and returns a ``Response``
|
|
object, which is documented below.
|
|
|
|
The key-value pairs in the ``data`` dictionary are used to create a GET
|
|
data payload. For example::
|
|
|
|
>>> c = Client()
|
|
>>> c.get('/customers/details/', {'name': 'fred', 'age': 7})
|
|
|
|
...will result in the evaluation of a GET request equivalent to::
|
|
|
|
/customers/details/?name=fred&age=7
|
|
|
|
The ``extra`` keyword arguments parameter can be used to specify
|
|
headers to be sent in the request. For example::
|
|
|
|
>>> c = Client()
|
|
>>> c.get('/customers/details/', {'name': 'fred', 'age': 7},
|
|
... HTTP_X_REQUESTED_WITH='XMLHttpRequest')
|
|
|
|
...will send the HTTP header ``HTTP_X_REQUESTED_WITH`` to the
|
|
details view, which is a good way to test code paths that use the
|
|
:meth:`django.http.HttpRequest.is_ajax()` method.
|
|
|
|
.. admonition:: CGI specification
|
|
|
|
The headers sent via ``**extra`` should follow CGI_ specification.
|
|
For example, emulating a different "Host" header as sent in the
|
|
HTTP request from the browser to the server should be passed
|
|
as ``HTTP_HOST``.
|
|
|
|
.. _CGI: http://www.w3.org/CGI/
|
|
|
|
If you already have the GET arguments in URL-encoded form, you can
|
|
use that encoding instead of using the data argument. For example,
|
|
the previous GET request could also be posed as::
|
|
|
|
>>> c = Client()
|
|
>>> c.get('/customers/details/?name=fred&age=7')
|
|
|
|
If you provide a URL with both an encoded GET data and a data argument,
|
|
the data argument will take precedence.
|
|
|
|
If you set ``follow`` to ``True`` the client will follow any redirects
|
|
and a ``redirect_chain`` attribute will be set in the response object
|
|
containing tuples of the intermediate urls and status codes.
|
|
|
|
If you had a URL ``/redirect_me/`` that redirected to ``/next/``, that
|
|
redirected to ``/final/``, this is what you'd see::
|
|
|
|
>>> response = c.get('/redirect_me/', follow=True)
|
|
>>> response.redirect_chain
|
|
[(u'http://testserver/next/', 302), (u'http://testserver/final/', 302)]
|
|
|
|
If you set ``secure`` to ``True`` the client will emulate an HTTPS
|
|
request.
|
|
|
|
.. method:: Client.post(path, data=None, content_type=MULTIPART_CONTENT, follow=False, secure=False, **extra)
|
|
|
|
Makes a POST request on the provided ``path`` and returns a
|
|
``Response`` object, which is documented below.
|
|
|
|
The key-value pairs in the ``data`` dictionary are used to submit POST
|
|
data. For example::
|
|
|
|
>>> c = Client()
|
|
>>> c.post('/login/', {'name': 'fred', 'passwd': 'secret'})
|
|
|
|
...will result in the evaluation of a POST request to this URL::
|
|
|
|
/login/
|
|
|
|
...with this POST data::
|
|
|
|
name=fred&passwd=secret
|
|
|
|
If you provide ``content_type`` (e.g. :mimetype:`text/xml` for an XML
|
|
payload), the contents of ``data`` will be sent as-is in the POST
|
|
request, using ``content_type`` in the HTTP ``Content-Type`` header.
|
|
|
|
If you don't provide a value for ``content_type``, the values in
|
|
``data`` will be transmitted with a content type of
|
|
:mimetype:`multipart/form-data`. In this case, the key-value pairs in
|
|
``data`` will be encoded as a multipart message and used to create the
|
|
POST data payload.
|
|
|
|
To submit multiple values for a given key -- for example, to specify
|
|
the selections for a ``<select multiple>`` -- provide the values as a
|
|
list or tuple for the required key. For example, this value of ``data``
|
|
would submit three selected values for the field named ``choices``::
|
|
|
|
{'choices': ('a', 'b', 'd')}
|
|
|
|
Submitting files is a special case. To POST a file, you need only
|
|
provide the file field name as a key, and a file handle to the file you
|
|
wish to upload as a value. For example::
|
|
|
|
>>> c = Client()
|
|
>>> with open('wishlist.doc') as fp:
|
|
... c.post('/customers/wishes/', {'name': 'fred', 'attachment': fp})
|
|
|
|
(The name ``attachment`` here is not relevant; use whatever name your
|
|
file-processing code expects.)
|
|
|
|
Note that if you wish to use the same file handle for multiple
|
|
``post()`` calls then you will need to manually reset the file
|
|
pointer between posts. The easiest way to do this is to
|
|
manually close the file after it has been provided to
|
|
``post()``, as demonstrated above.
|
|
|
|
You should also ensure that the file is opened in a way that
|
|
allows the data to be read. If your file contains binary data
|
|
such as an image, this means you will need to open the file in
|
|
``rb`` (read binary) mode.
|
|
|
|
The ``extra`` argument acts the same as for :meth:`Client.get`.
|
|
|
|
If the URL you request with a POST contains encoded parameters, these
|
|
parameters will be made available in the request.GET data. For example,
|
|
if you were to make the request::
|
|
|
|
>>> c.post('/login/?visitor=true', {'name': 'fred', 'passwd': 'secret'})
|
|
|
|
... the view handling this request could interrogate request.POST
|
|
to retrieve the username and password, and could interrogate request.GET
|
|
to determine if the user was a visitor.
|
|
|
|
If you set ``follow`` to ``True`` the client will follow any redirects
|
|
and a ``redirect_chain`` attribute will be set in the response object
|
|
containing tuples of the intermediate urls and status codes.
|
|
|
|
If you set ``secure`` to ``True`` the client will emulate an HTTPS
|
|
request.
|
|
|
|
.. method:: Client.head(path, data=None, follow=False, secure=False, **extra)
|
|
|
|
Makes a HEAD request on the provided ``path`` and returns a
|
|
``Response`` object. This method works just like :meth:`Client.get`,
|
|
including the ``follow``, ``secure`` and ``extra`` arguments, except
|
|
it does not return a message body.
|
|
|
|
.. method:: Client.options(path, data='', content_type='application/octet-stream', follow=False, secure=False, **extra)
|
|
|
|
Makes an OPTIONS request on the provided ``path`` and returns a
|
|
``Response`` object. Useful for testing RESTful interfaces.
|
|
|
|
When ``data`` is provided, it is used as the request body, and
|
|
a ``Content-Type`` header is set to ``content_type``.
|
|
|
|
The ``follow``, ``secure`` and ``extra`` arguments act the same as for
|
|
:meth:`Client.get`.
|
|
|
|
.. method:: Client.put(path, data='', content_type='application/octet-stream', follow=False, secure=False, **extra)
|
|
|
|
Makes a PUT request on the provided ``path`` and returns a
|
|
``Response`` object. Useful for testing RESTful interfaces.
|
|
|
|
When ``data`` is provided, it is used as the request body, and
|
|
a ``Content-Type`` header is set to ``content_type``.
|
|
|
|
The ``follow``, ``secure`` and ``extra`` arguments act the same as for
|
|
:meth:`Client.get`.
|
|
|
|
.. method:: Client.patch(path, data='', content_type='application/octet-stream', follow=False, secure=False, **extra)
|
|
|
|
Makes a PATCH request on the provided ``path`` and returns a
|
|
``Response`` object. Useful for testing RESTful interfaces.
|
|
|
|
The ``follow``, ``secure`` and ``extra`` arguments act the same as for
|
|
:meth:`Client.get`.
|
|
|
|
.. method:: Client.delete(path, data='', content_type='application/octet-stream', follow=False, secure=False, **extra)
|
|
|
|
Makes an DELETE request on the provided ``path`` and returns a
|
|
``Response`` object. Useful for testing RESTful interfaces.
|
|
|
|
When ``data`` is provided, it is used as the request body, and
|
|
a ``Content-Type`` header is set to ``content_type``.
|
|
|
|
The ``follow``, ``secure`` and ``extra`` arguments act the same as for
|
|
:meth:`Client.get`.
|
|
|
|
.. method:: Client.login(**credentials)
|
|
|
|
If your site uses Django's :doc:`authentication system</topics/auth/index>`
|
|
and you deal with logging in users, you can use the test client's
|
|
``login()`` method to simulate the effect of a user logging into the
|
|
site.
|
|
|
|
After you call this method, the test client will have all the cookies
|
|
and session data required to pass any login-based tests that may form
|
|
part of a view.
|
|
|
|
The format of the ``credentials`` argument depends on which
|
|
:ref:`authentication backend <authentication-backends>` you're using
|
|
(which is configured by your :setting:`AUTHENTICATION_BACKENDS`
|
|
setting). If you're using the standard authentication backend provided
|
|
by Django (``ModelBackend``), ``credentials`` should be the user's
|
|
username and password, provided as keyword arguments::
|
|
|
|
>>> c = Client()
|
|
>>> c.login(username='fred', password='secret')
|
|
|
|
# Now you can access a view that's only available to logged-in users.
|
|
|
|
If you're using a different authentication backend, this method may
|
|
require different credentials. It requires whichever credentials are
|
|
required by your backend's ``authenticate()`` method.
|
|
|
|
``login()`` returns ``True`` if it the credentials were accepted and
|
|
login was successful.
|
|
|
|
Finally, you'll need to remember to create user accounts before you can
|
|
use this method. As we explained above, the test runner is executed
|
|
using a test database, which contains no users by default. As a result,
|
|
user accounts that are valid on your production site will not work
|
|
under test conditions. You'll need to create users as part of the test
|
|
suite -- either manually (using the Django model API) or with a test
|
|
fixture. Remember that if you want your test user to have a password,
|
|
you can't set the user's password by setting the password attribute
|
|
directly -- you must use the
|
|
:meth:`~django.contrib.auth.models.User.set_password()` function to
|
|
store a correctly hashed password. Alternatively, you can use the
|
|
:meth:`~django.contrib.auth.models.UserManager.create_user` helper
|
|
method to create a new user with a correctly hashed password.
|
|
|
|
.. versionadded:: 1.7
|
|
|
|
Requests made with :meth:`~django.test.Client.login` go through the
|
|
request middleware. If you need to control the environment, you can
|
|
do so at :class:`~django.test.Client` instantiation or with the
|
|
`Client.defaults` attribute.
|
|
|
|
.. method:: Client.logout()
|
|
|
|
If your site uses Django's :doc:`authentication system</topics/auth/index>`,
|
|
the ``logout()`` method can be used to simulate the effect of a user
|
|
logging out of your site.
|
|
|
|
After you call this method, the test client will have all the cookies
|
|
and session data cleared to defaults. Subsequent requests will appear
|
|
to come from an :class:`~django.contrib.auth.models.AnonymousUser`.
|
|
|
|
.. versionadded:: 1.7
|
|
|
|
Requests made with :meth:`~django.test.Client.logout` go through the
|
|
request middleware. If you need to control the environment, you can
|
|
do so at :class:`~django.test.Client` instantiation or with the
|
|
`Client.defaults` attribute.
|
|
|
|
Testing responses
|
|
~~~~~~~~~~~~~~~~~
|
|
|
|
The ``get()`` and ``post()`` methods both return a ``Response`` object. This
|
|
``Response`` object is *not* the same as the ``HttpResponse`` object returned
|
|
Django views; the test response object has some additional data useful for
|
|
test code to verify.
|
|
|
|
Specifically, a ``Response`` object has the following attributes:
|
|
|
|
.. class:: Response()
|
|
|
|
.. attribute:: client
|
|
|
|
The test client that was used to make the request that resulted in the
|
|
response.
|
|
|
|
.. attribute:: content
|
|
|
|
The body of the response, as a string. This is the final page content as
|
|
rendered by the view, or any error message.
|
|
|
|
.. attribute:: context
|
|
|
|
The template ``Context`` instance that was used to render the template that
|
|
produced the response content.
|
|
|
|
If the rendered page used multiple templates, then ``context`` will be a
|
|
list of ``Context`` objects, in the order in which they were rendered.
|
|
|
|
Regardless of the number of templates used during rendering, you can
|
|
retrieve context values using the ``[]`` operator. For example, the
|
|
context variable ``name`` could be retrieved using::
|
|
|
|
>>> response = client.get('/foo/')
|
|
>>> response.context['name']
|
|
'Arthur'
|
|
|
|
.. attribute:: request
|
|
|
|
The request data that stimulated the response.
|
|
|
|
.. attribute:: wsgi_request
|
|
|
|
.. versionadded:: 1.7
|
|
|
|
The ``WSGIRequest`` instance generated by the test handler that
|
|
generated the response.
|
|
|
|
.. attribute:: status_code
|
|
|
|
The HTTP status of the response, as an integer. See
|
|
:rfc:`2616#section-10` for a full list of HTTP status codes.
|
|
|
|
.. attribute:: templates
|
|
|
|
A list of ``Template`` instances used to render the final content, in
|
|
the order they were rendered. For each template in the list, use
|
|
``template.name`` to get the template's file name, if the template was
|
|
loaded from a file. (The name is a string such as
|
|
``'admin/index.html'``.)
|
|
|
|
You can also use dictionary syntax on the response object to query the value
|
|
of any settings in the HTTP headers. For example, you could determine the
|
|
content type of a response using ``response['Content-Type']``.
|
|
|
|
Exceptions
|
|
~~~~~~~~~~
|
|
|
|
If you point the test client at a view that raises an exception, that exception
|
|
will be visible in the test case. You can then use a standard ``try ... except``
|
|
block or :meth:`~unittest.TestCase.assertRaises` to test for exceptions.
|
|
|
|
The only exceptions that are not visible to the test client are ``Http404``,
|
|
``PermissionDenied`` and ``SystemExit``. Django catches these exceptions
|
|
internally and converts them into the appropriate HTTP response codes. In these
|
|
cases, you can check ``response.status_code`` in your test.
|
|
|
|
Persistent state
|
|
~~~~~~~~~~~~~~~~
|
|
|
|
The test client is stateful. If a response returns a cookie, then that cookie
|
|
will be stored in the test client and sent with all subsequent ``get()`` and
|
|
``post()`` requests.
|
|
|
|
Expiration policies for these cookies are not followed. If you want a cookie
|
|
to expire, either delete it manually or create a new ``Client`` instance (which
|
|
will effectively delete all cookies).
|
|
|
|
A test client has two attributes that store persistent state information. You
|
|
can access these properties as part of a test condition.
|
|
|
|
.. attribute:: Client.cookies
|
|
|
|
A Python :class:`~Cookie.SimpleCookie` object, containing the current values
|
|
of all the client cookies. See the documentation of the :mod:`Cookie` module
|
|
for more.
|
|
|
|
.. attribute:: Client.session
|
|
|
|
A dictionary-like object containing session information. See the
|
|
:doc:`session documentation</topics/http/sessions>` for full details.
|
|
|
|
To modify the session and then save it, it must be stored in a variable
|
|
first (because a new ``SessionStore`` is created every time this property
|
|
is accessed)::
|
|
|
|
def test_something(self):
|
|
session = self.client.session
|
|
session['somekey'] = 'test'
|
|
session.save()
|
|
|
|
Example
|
|
~~~~~~~
|
|
|
|
The following is a simple unit test using the test client::
|
|
|
|
import unittest
|
|
from django.test import Client
|
|
|
|
class SimpleTest(unittest.TestCase):
|
|
def setUp(self):
|
|
# Every test needs a client.
|
|
self.client = Client()
|
|
|
|
def test_details(self):
|
|
# Issue a GET request.
|
|
response = self.client.get('/customer/details/')
|
|
|
|
# Check that the response is 200 OK.
|
|
self.assertEqual(response.status_code, 200)
|
|
|
|
# Check that the rendered context contains 5 customers.
|
|
self.assertEqual(len(response.context['customers']), 5)
|
|
|
|
.. seealso::
|
|
|
|
:class:`django.test.RequestFactory`
|
|
|
|
.. _django-testcase-subclasses:
|
|
|
|
Provided test case classes
|
|
--------------------------
|
|
|
|
Normal Python unit test classes extend a base class of
|
|
:class:`unittest.TestCase`. Django provides a few extensions of this base class:
|
|
|
|
.. _testcase_hierarchy_diagram:
|
|
|
|
.. figure:: _images/django_unittest_classes_hierarchy.*
|
|
:alt: Hierarchy of Django unit testing classes (TestCase subclasses)
|
|
:width: 508
|
|
:height: 328
|
|
|
|
Hierarchy of Django unit testing classes
|
|
|
|
SimpleTestCase
|
|
~~~~~~~~~~~~~~
|
|
|
|
.. class:: SimpleTestCase()
|
|
|
|
A thin subclass of :class:`unittest.TestCase`, it extends it with some basic
|
|
functionality like:
|
|
|
|
* Saving and restoring the Python warning machinery state.
|
|
* Some useful assertions like:
|
|
|
|
* Checking that a callable :meth:`raises a certain exception
|
|
<SimpleTestCase.assertRaisesMessage>`.
|
|
* Testing form field :meth:`rendering and error treatment
|
|
<SimpleTestCase.assertFieldOutput>`.
|
|
* Testing :meth:`HTML responses for the presence/lack of a given fragment
|
|
<SimpleTestCase.assertContains>`.
|
|
* Verifying that a template :meth:`has/hasn't been used to generate a given
|
|
response content <SimpleTestCase.assertTemplateUsed>`.
|
|
* Verifying a HTTP :meth:`redirect <SimpleTestCase.assertRedirects>` is
|
|
performed by the app.
|
|
* Robustly testing two :meth:`HTML fragments <SimpleTestCase.assertHTMLEqual>`
|
|
for equality/inequality or :meth:`containment <SimpleTestCase.assertInHTML>`.
|
|
* Robustly testing two :meth:`XML fragments <SimpleTestCase.assertXMLEqual>`
|
|
for equality/inequality.
|
|
* Robustly testing two :meth:`JSON fragments <SimpleTestCase.assertJSONEqual>`
|
|
for equality.
|
|
|
|
* The ability to run tests with :ref:`modified settings <overriding-settings>`.
|
|
* Using the :attr:`~SimpleTestCase.client` :class:`~django.test.Client`.
|
|
* Custom test-time :attr:`URL maps <SimpleTestCase.urls>`.
|
|
|
|
.. versionchanged:: 1.6
|
|
|
|
The latter two features were moved from ``TransactionTestCase`` to
|
|
``SimpleTestCase`` in Django 1.6.
|
|
|
|
If you need any of the other more complex and heavyweight Django-specific
|
|
features like:
|
|
|
|
* Testing or using the ORM.
|
|
* Database :attr:`~TransactionTestCase.fixtures`.
|
|
* Test :ref:`skipping based on database backend features <skipping-tests>`.
|
|
* The remaining specialized :meth:`assert*
|
|
<TransactionTestCase.assertQuerysetEqual>` methods.
|
|
|
|
then you should use :class:`~django.test.TransactionTestCase` or
|
|
:class:`~django.test.TestCase` instead.
|
|
|
|
``SimpleTestCase`` inherits from ``unittest.TestCase``.
|
|
|
|
TransactionTestCase
|
|
~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. class:: TransactionTestCase()
|
|
|
|
Django's ``TestCase`` class (described below) makes use of database transaction
|
|
facilities to speed up the process of resetting the database to a known state
|
|
at the beginning of each test. A consequence of this, however, is that the
|
|
effects of transaction commit and rollback cannot be tested by a Django
|
|
``TestCase`` class. If your test requires testing of such transactional
|
|
behavior, you should use a Django ``TransactionTestCase``.
|
|
|
|
``TransactionTestCase`` and ``TestCase`` are identical except for the manner
|
|
in which the database is reset to a known state and the ability for test code
|
|
to test the effects of commit and rollback:
|
|
|
|
* A ``TransactionTestCase`` resets the database after the test runs by
|
|
truncating all tables. A ``TransactionTestCase`` may call commit and rollback
|
|
and observe the effects of these calls on the database.
|
|
|
|
* A ``TestCase``, on the other hand, does not truncate tables after a test.
|
|
Instead, it encloses the test code in a database transaction that is rolled
|
|
back at the end of the test. Both explicit commits like
|
|
``transaction.commit()`` and implicit ones that may be caused by
|
|
``transaction.atomic()`` are replaced with a ``nop`` operation. This
|
|
guarantees that the rollback at the end of the test restores the database to
|
|
its initial state.
|
|
|
|
When running on a database that does not support rollback (e.g. MySQL with the
|
|
MyISAM storage engine), ``TestCase`` falls back to initializing the database
|
|
by truncating tables and reloading initial data.
|
|
|
|
.. warning::
|
|
|
|
While ``commit`` and ``rollback`` operations still *appear* to work when
|
|
used in ``TestCase``, no actual commit or rollback will be performed by the
|
|
database. This can cause your tests to pass or fail unexpectedly. Always
|
|
use ``TransactionTestCase`` when testing transactional behavior.
|
|
|
|
``TransactionTestCase`` inherits from :class:`~django.test.SimpleTestCase`.
|
|
|
|
TestCase
|
|
~~~~~~~~
|
|
|
|
.. class:: TestCase()
|
|
|
|
This class provides some additional capabilities that can be useful for testing
|
|
Web sites.
|
|
|
|
Converting a normal :class:`unittest.TestCase` to a Django :class:`TestCase` is
|
|
easy: Just change the base class of your test from ``'unittest.TestCase'`` to
|
|
``'django.test.TestCase'``. All of the standard Python unit test functionality
|
|
will continue to be available, but it will be augmented with some useful
|
|
additions, including:
|
|
|
|
* Automatic loading of fixtures.
|
|
|
|
* Wraps each test in a transaction.
|
|
|
|
* Creates a TestClient instance.
|
|
|
|
* Django-specific assertions for testing for things like redirection and form
|
|
errors.
|
|
|
|
``TestCase`` inherits from :class:`~django.test.TransactionTestCase`.
|
|
|
|
.. _live-test-server:
|
|
|
|
LiveServerTestCase
|
|
~~~~~~~~~~~~~~~~~~
|
|
|
|
.. class:: LiveServerTestCase()
|
|
|
|
``LiveServerTestCase`` does basically the same as
|
|
:class:`~django.test.TransactionTestCase` with one extra feature: it launches a
|
|
live Django server in the background on setup, and shuts it down on teardown.
|
|
This allows the use of automated test clients other than the
|
|
:ref:`Django dummy client <test-client>` such as, for example, the Selenium_
|
|
client, to execute a series of functional tests inside a browser and simulate a
|
|
real user's actions.
|
|
|
|
By default the live server's address is ``'localhost:8081'`` and the full URL
|
|
can be accessed during the tests with ``self.live_server_url``. If you'd like
|
|
to change the default address (in the case, for example, where the 8081 port is
|
|
already taken) then you may pass a different one to the :djadmin:`test` command
|
|
via the :djadminopt:`--liveserver` option, for example:
|
|
|
|
.. code-block:: bash
|
|
|
|
./manage.py test --liveserver=localhost:8082
|
|
|
|
Another way of changing the default server address is by setting the
|
|
`DJANGO_LIVE_TEST_SERVER_ADDRESS` environment variable somewhere in your
|
|
code (for example, in a :ref:`custom test runner<topics-testing-test_runner>`):
|
|
|
|
.. code-block:: python
|
|
|
|
import os
|
|
os.environ['DJANGO_LIVE_TEST_SERVER_ADDRESS'] = 'localhost:8082'
|
|
|
|
In the case where the tests are run by multiple processes in parallel (for
|
|
example, in the context of several simultaneous `continuous integration`_
|
|
builds), the processes will compete for the same address, and therefore your
|
|
tests might randomly fail with an "Address already in use" error. To avoid this
|
|
problem, you can pass a comma-separated list of ports or ranges of ports (at
|
|
least as many as the number of potential parallel processes). For example:
|
|
|
|
.. code-block:: bash
|
|
|
|
./manage.py test --liveserver=localhost:8082,8090-8100,9000-9200,7041
|
|
|
|
Then, during test execution, each new live test server will try every specified
|
|
port until it finds one that is free and takes it.
|
|
|
|
.. _continuous integration: http://en.wikipedia.org/wiki/Continuous_integration
|
|
|
|
To demonstrate how to use ``LiveServerTestCase``, let's write a simple Selenium
|
|
test. First of all, you need to install the `selenium package`_ into your
|
|
Python path:
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install selenium
|
|
|
|
Then, add a ``LiveServerTestCase``-based test to your app's tests module
|
|
(for example: ``myapp/tests.py``). The code for this test may look as follows:
|
|
|
|
.. code-block:: python
|
|
|
|
from django.test import LiveServerTestCase
|
|
from selenium.webdriver.firefox.webdriver import WebDriver
|
|
|
|
class MySeleniumTests(LiveServerTestCase):
|
|
fixtures = ['user-data.json']
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.selenium = WebDriver()
|
|
super(MySeleniumTests, cls).setUpClass()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
cls.selenium.quit()
|
|
super(MySeleniumTests, cls).tearDownClass()
|
|
|
|
def test_login(self):
|
|
self.selenium.get('%s%s' % (self.live_server_url, '/login/'))
|
|
username_input = self.selenium.find_element_by_name("username")
|
|
username_input.send_keys('myuser')
|
|
password_input = self.selenium.find_element_by_name("password")
|
|
password_input.send_keys('secret')
|
|
self.selenium.find_element_by_xpath('//input[@value="Log in"]').click()
|
|
|
|
Finally, you may run the test as follows:
|
|
|
|
.. code-block:: bash
|
|
|
|
./manage.py test myapp.MySeleniumTests.test_login
|
|
|
|
This example will automatically open Firefox then go to the login page, enter
|
|
the credentials and press the "Log in" button. Selenium offers other drivers in
|
|
case you do not have Firefox installed or wish to use another browser. The
|
|
example above is just a tiny fraction of what the Selenium client can do; check
|
|
out the `full reference`_ for more details.
|
|
|
|
.. _Selenium: http://seleniumhq.org/
|
|
.. _selenium package: https://pypi.python.org/pypi/selenium
|
|
.. _full reference: http://selenium-python.readthedocs.org/en/latest/api.html
|
|
.. _Firefox: http://www.mozilla.com/firefox/
|
|
|
|
.. versionchanged:: 1.7
|
|
|
|
Before Django 1.7 ``LiveServerTestCase`` used to rely on the
|
|
:doc:`staticfiles contrib app </howto/static-files/index>` to get the
|
|
static assets of the application(s) under test transparently served at their
|
|
expected locations during the execution of these tests.
|
|
|
|
In Django 1.7 this dependency of core functionality on a ``contrib``
|
|
appplication has been removed, because of which ``LiveServerTestCase``
|
|
ability in this respect has been retrofitted to simply publish the contents
|
|
of the file system under :setting:`STATIC_ROOT` at the :setting:`STATIC_URL`
|
|
URL.
|
|
|
|
If you use the ``staticfiles`` app in your project and need to perform live
|
|
testing then you might want to consider using the
|
|
:class:`~django.contrib.staticfiles.testing.StaticLiveServerCase` subclass
|
|
shipped with it instead because it's the one that implements the original
|
|
behavior now. See :ref:`the relevant documentation
|
|
<staticfiles-testing-support>` for more details.
|
|
|
|
.. note::
|
|
|
|
When using an in-memory SQLite database to run the tests, the same database
|
|
connection will be shared by two threads in parallel: the thread in which
|
|
the live server is run and the thread in which the test case is run. It's
|
|
important to prevent simultaneous database queries via this shared
|
|
connection by the two threads, as that may sometimes randomly cause the
|
|
tests to fail. So you need to ensure that the two threads don't access the
|
|
database at the same time. In particular, this means that in some cases
|
|
(for example, just after clicking a link or submitting a form), you might
|
|
need to check that a response is received by Selenium and that the next
|
|
page is loaded before proceeding with further test execution.
|
|
Do this, for example, by making Selenium wait until the ``<body>`` HTML tag
|
|
is found in the response (requires Selenium > 2.13):
|
|
|
|
.. code-block:: python
|
|
|
|
def test_login(self):
|
|
from selenium.webdriver.support.wait import WebDriverWait
|
|
timeout = 2
|
|
...
|
|
self.selenium.find_element_by_xpath('//input[@value="Log in"]').click()
|
|
# Wait until the response is received
|
|
WebDriverWait(self.selenium, timeout).until(
|
|
lambda driver: driver.find_element_by_tag_name('body'))
|
|
|
|
The tricky thing here is that there's really no such thing as a "page load,"
|
|
especially in modern Web apps that generate HTML dynamically after the
|
|
server generates the initial document. So, simply checking for the presence
|
|
of ``<body>`` in the response might not necessarily be appropriate for all
|
|
use cases. Please refer to the `Selenium FAQ`_ and
|
|
`Selenium documentation`_ for more information.
|
|
|
|
.. _Selenium FAQ: http://code.google.com/p/selenium/wiki/FrequentlyAskedQuestions#Q:_WebDriver_fails_to_find_elements_/_Does_not_block_on_page_loa
|
|
.. _Selenium documentation: http://seleniumhq.org/docs/04_webdriver_advanced.html#explicit-waits
|
|
|
|
Test cases features
|
|
-------------------
|
|
|
|
Default test client
|
|
~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. attribute:: SimpleTestCase.client
|
|
|
|
Every test case in a ``django.test.*TestCase`` instance has access to an
|
|
instance of a Django test client. This client can be accessed as
|
|
``self.client``. This client is recreated for each test, so you don't have to
|
|
worry about state (such as cookies) carrying over from one test to another.
|
|
|
|
This means, instead of instantiating a ``Client`` in each test::
|
|
|
|
import unittest
|
|
from django.test import Client
|
|
|
|
class SimpleTest(unittest.TestCase):
|
|
def test_details(self):
|
|
client = Client()
|
|
response = client.get('/customer/details/')
|
|
self.assertEqual(response.status_code, 200)
|
|
|
|
def test_index(self):
|
|
client = Client()
|
|
response = client.get('/customer/index/')
|
|
self.assertEqual(response.status_code, 200)
|
|
|
|
...you can just refer to ``self.client``, like so::
|
|
|
|
from django.test import TestCase
|
|
|
|
class SimpleTest(TestCase):
|
|
def test_details(self):
|
|
response = self.client.get('/customer/details/')
|
|
self.assertEqual(response.status_code, 200)
|
|
|
|
def test_index(self):
|
|
response = self.client.get('/customer/index/')
|
|
self.assertEqual(response.status_code, 200)
|
|
|
|
Customizing the test client
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. attribute:: SimpleTestCase.client_class
|
|
|
|
If you want to use a different ``Client`` class (for example, a subclass
|
|
with customized behavior), use the :attr:`~SimpleTestCase.client_class` class
|
|
attribute::
|
|
|
|
from django.test import TestCase, Client
|
|
|
|
class MyTestClient(Client):
|
|
# Specialized methods for your environment...
|
|
|
|
class MyTest(TestCase):
|
|
client_class = MyTestClient
|
|
|
|
def test_my_stuff(self):
|
|
# Here self.client is an instance of MyTestClient...
|
|
call_some_test_code()
|
|
|
|
.. _topics-testing-fixtures:
|
|
|
|
Fixture loading
|
|
~~~~~~~~~~~~~~~
|
|
|
|
.. attribute:: TransactionTestCase.fixtures
|
|
|
|
A test case for a database-backed Web site isn't much use if there isn't any
|
|
data in the database. To make it easy to put test data into the database,
|
|
Django's custom ``TransactionTestCase`` class provides a way of loading
|
|
**fixtures**.
|
|
|
|
A fixture is a collection of data that Django knows how to import into a
|
|
database. For example, if your site has user accounts, you might set up a
|
|
fixture of fake user accounts in order to populate your database during tests.
|
|
|
|
The most straightforward way of creating a fixture is to use the
|
|
:djadmin:`manage.py dumpdata <dumpdata>` command. This assumes you
|
|
already have some data in your database. See the :djadmin:`dumpdata
|
|
documentation<dumpdata>` for more details.
|
|
|
|
.. note::
|
|
|
|
If you've ever run :djadmin:`manage.py migrate<migrate>`, you've
|
|
already used a fixture without even knowing it! When you call
|
|
:djadmin:`migrate` in the database for the first time, Django
|
|
installs a fixture called ``initial_data``. This gives you a way
|
|
of populating a new database with any initial data, such as a
|
|
default set of categories.
|
|
|
|
Fixtures with other names can always be installed manually using
|
|
the :djadmin:`manage.py loaddata<loaddata>` command.
|
|
|
|
.. admonition:: Initial SQL data and testing
|
|
|
|
Django provides a second way to insert initial data into models --
|
|
the :ref:`custom SQL hook <initial-sql>`. However, this technique
|
|
*cannot* be used to provide initial data for testing purposes.
|
|
Django's test framework flushes the contents of the test database
|
|
after each test; as a result, any data added using the custom SQL
|
|
hook will be lost.
|
|
|
|
Once you've created a fixture and placed it in a ``fixtures`` directory in one
|
|
of your :setting:`INSTALLED_APPS`, you can use it in your unit tests by
|
|
specifying a ``fixtures`` class attribute on your :class:`django.test.TestCase`
|
|
subclass::
|
|
|
|
from django.test import TestCase
|
|
from myapp.models import Animal
|
|
|
|
class AnimalTestCase(TestCase):
|
|
fixtures = ['mammals.json', 'birds']
|
|
|
|
def setUp(self):
|
|
# Test definitions as before.
|
|
call_setup_methods()
|
|
|
|
def testFluffyAnimals(self):
|
|
# A test that uses the fixtures.
|
|
call_some_test_code()
|
|
|
|
Here's specifically what will happen:
|
|
|
|
* At the start of each test case, before ``setUp()`` is run, Django will
|
|
flush the database, returning the database to the state it was in
|
|
directly after :djadmin:`migrate` was called.
|
|
|
|
* Then, all the named fixtures are installed. In this example, Django will
|
|
install any JSON fixture named ``mammals``, followed by any fixture named
|
|
``birds``. See the :djadmin:`loaddata` documentation for more
|
|
details on defining and installing fixtures.
|
|
|
|
This flush/load procedure is repeated for each test in the test case, so you
|
|
can be certain that the outcome of a test will not be affected by another test,
|
|
or by the order of test execution.
|
|
|
|
By default, fixtures are only loaded into the ``default`` database. If you are
|
|
using multiple databases and set :attr:`multi_db=True
|
|
<TransactionTestCase.multi_db>`, fixtures will be loaded into all databases.
|
|
|
|
URLconf configuration
|
|
~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. attribute:: SimpleTestCase.urls
|
|
|
|
If your application provides views, you may want to include tests that use the
|
|
test client to exercise those views. However, an end user is free to deploy the
|
|
views in your application at any URL of their choosing. This means that your
|
|
tests can't rely upon the fact that your views will be available at a
|
|
particular URL.
|
|
|
|
In order to provide a reliable URL space for your test,
|
|
``django.test.*TestCase`` classes provide the ability to customize the URLconf
|
|
configuration for the duration of the execution of a test suite. If your
|
|
``*TestCase`` instance defines an ``urls`` attribute, the ``*TestCase`` will use
|
|
the value of that attribute as the :setting:`ROOT_URLCONF` for the duration
|
|
of that test.
|
|
|
|
For example::
|
|
|
|
from django.test import TestCase
|
|
|
|
class TestMyViews(TestCase):
|
|
urls = 'myapp.test_urls'
|
|
|
|
def testIndexPageView(self):
|
|
# Here you'd test your view using ``Client``.
|
|
call_some_test_code()
|
|
|
|
This test case will use the contents of ``myapp.test_urls`` as the
|
|
URLconf for the duration of the test case.
|
|
|
|
.. _emptying-test-outbox:
|
|
|
|
Multi-database support
|
|
~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. attribute:: TransactionTestCase.multi_db
|
|
|
|
Django sets up a test database corresponding to every database that is
|
|
defined in the :setting:`DATABASES` definition in your settings
|
|
file. However, a big part of the time taken to run a Django TestCase
|
|
is consumed by the call to ``flush`` that ensures that you have a
|
|
clean database at the start of each test run. If you have multiple
|
|
databases, multiple flushes are required (one for each database),
|
|
which can be a time consuming activity -- especially if your tests
|
|
don't need to test multi-database activity.
|
|
|
|
As an optimization, Django only flushes the ``default`` database at
|
|
the start of each test run. If your setup contains multiple databases,
|
|
and you have a test that requires every database to be clean, you can
|
|
use the ``multi_db`` attribute on the test suite to request a full
|
|
flush.
|
|
|
|
For example::
|
|
|
|
class TestMyViews(TestCase):
|
|
multi_db = True
|
|
|
|
def testIndexPageView(self):
|
|
call_some_test_code()
|
|
|
|
This test case will flush *all* the test databases before running
|
|
``testIndexPageView``.
|
|
|
|
The ``multi_db`` flag also affects into which databases the
|
|
attr:`TransactionTestCase.fixtures` are loaded. By default (when
|
|
``multi_db=False``), fixtures are only loaded into the ``default`` database.
|
|
If ``multi_db=True``, fixtures are loaded into all databases.
|
|
|
|
.. _overriding-settings:
|
|
|
|
Overriding settings
|
|
~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. method:: SimpleTestCase.settings()
|
|
|
|
For testing purposes it's often useful to change a setting temporarily and
|
|
revert to the original value after running the testing code. For this use case
|
|
Django provides a standard Python context manager (see :pep:`343`) called
|
|
:meth:`~django.test.SimpleTestCase.settings`, which can be used like this::
|
|
|
|
from django.test import TestCase
|
|
|
|
class LoginTestCase(TestCase):
|
|
|
|
def test_login(self):
|
|
|
|
# First check for the default behavior
|
|
response = self.client.get('/sekrit/')
|
|
self.assertRedirects(response, '/accounts/login/?next=/sekrit/')
|
|
|
|
# Then override the LOGIN_URL setting
|
|
with self.settings(LOGIN_URL='/other/login/'):
|
|
response = self.client.get('/sekrit/')
|
|
self.assertRedirects(response, '/other/login/?next=/sekrit/')
|
|
|
|
This example will override the :setting:`LOGIN_URL` setting for the code
|
|
in the ``with`` block and reset its value to the previous state afterwards.
|
|
|
|
.. method:: SimpleTestCase.modify_settings()
|
|
|
|
.. versionadded:: 1.7
|
|
|
|
It can prove unwieldy to redefine settings that contain a list of values. In
|
|
practice, adding or removing values is often sufficient. The
|
|
:meth:`~django.test.SimpleTestCase.modify_settings` context manager makes it
|
|
easy::
|
|
|
|
from django.test import TestCase
|
|
|
|
class MiddlewareTestCase(TestCase):
|
|
|
|
def test_cache_middleware(self):
|
|
with self.modify_settings(MIDDLEWARE_CLASSES={
|
|
'append': 'django.middleware.cache.FetchFromCacheMiddleware',
|
|
'prepend': 'django.middleware.cache.UpdateCacheMiddleware',
|
|
'remove': [
|
|
'django.contrib.sessions.middleware.SessionMiddleware',
|
|
'django.contrib.auth.middleware.AuthenticationMiddleware',
|
|
'django.contrib.messages.middleware.MessageMiddleware',
|
|
],
|
|
}):
|
|
response = self.client.get('/')
|
|
# ...
|
|
|
|
For each action, you can supply either a list of values or a string. When the
|
|
value already exists in the list, ``append`` and ``prepend`` have no effect;
|
|
neither does ``remove`` when the value doesn't exist.
|
|
|
|
.. function:: override_settings
|
|
|
|
In case you want to override a setting for a test method, Django provides the
|
|
:func:`~django.test.override_settings` decorator (see :pep:`318`). It's used
|
|
like this::
|
|
|
|
from django.test import TestCase, override_settings
|
|
|
|
class LoginTestCase(TestCase):
|
|
|
|
@override_settings(LOGIN_URL='/other/login/')
|
|
def test_login(self):
|
|
response = self.client.get('/sekrit/')
|
|
self.assertRedirects(response, '/other/login/?next=/sekrit/')
|
|
|
|
The decorator can also be applied to :class:`~django.test.TestCase` classes::
|
|
|
|
from django.test import TestCase, override_settings
|
|
|
|
@override_settings(LOGIN_URL='/other/login/')
|
|
class LoginTestCase(TestCase):
|
|
|
|
def test_login(self):
|
|
response = self.client.get('/sekrit/')
|
|
self.assertRedirects(response, '/other/login/?next=/sekrit/')
|
|
|
|
.. versionchanged:: 1.7
|
|
|
|
Previously, ``override_settings`` was imported from ``django.test.utils``.
|
|
|
|
.. function:: modify_settings
|
|
|
|
.. versionadded:: 1.7
|
|
|
|
Likewise, Django provides the :func:`~django.test.modify_settings`
|
|
decorator::
|
|
|
|
from django.test import TestCase, modify_settings
|
|
|
|
class MiddlewareTestCase(TestCase):
|
|
|
|
@modify_settings(MIDDLEWARE_CLASSES={
|
|
'append': 'django.middleware.cache.FetchFromCacheMiddleware',
|
|
'prepend': 'django.middleware.cache.UpdateCacheMiddleware',
|
|
})
|
|
def test_cache_middleware(self):
|
|
response = self.client.get('/')
|
|
# ...
|
|
|
|
The decorator can also be applied to test case classes::
|
|
|
|
from django.test import TestCase, modify_settings
|
|
|
|
@modify_settings(MIDDLEWARE_CLASSES={
|
|
'append': 'django.middleware.cache.FetchFromCacheMiddleware',
|
|
'prepend': 'django.middleware.cache.UpdateCacheMiddleware',
|
|
})
|
|
class MiddlewareTestCase(TestCase):
|
|
|
|
def test_cache_middleware(self):
|
|
response = self.client.get('/')
|
|
# ...
|
|
|
|
.. note::
|
|
|
|
When given a class, these decorators modify the class directly and return
|
|
it; they don't create and return a modified copy of it. So if you try to
|
|
tweak the above examples to assign the return value to a different name
|
|
than ``LoginTestCase`` or ``MiddlewareTestCase``, you may be surprised to
|
|
find that the original test case classes are still equally affected by the
|
|
decorator. For a given class, :func:`~django.test.modify_settings` is
|
|
always applied after :func:`~django.test.override_settings`.
|
|
|
|
.. warning::
|
|
|
|
The settings file contains some settings that are only consulted during
|
|
initialization of Django internals. If you change them with
|
|
``override_settings``, the setting is changed if you access it via the
|
|
``django.conf.settings`` module, however, Django's internals access it
|
|
differently. Effectively, using :func:`~django.test.override_settings` or
|
|
:func:`~django.test.modify_settings` with these settings is probably not
|
|
going to do what you expect it to do.
|
|
|
|
We do not recommend altering the :setting:`DATABASES` setting. Altering
|
|
the :setting:`CACHES` setting is possible, but a bit tricky if you are
|
|
using internals that make using of caching, like
|
|
:mod:`django.contrib.sessions`. For example, you will have to reinitialize
|
|
the session backend in a test that uses cached sessions and overrides
|
|
:setting:`CACHES`.
|
|
|
|
You can also simulate the absence of a setting by deleting it after settings
|
|
have been overridden, like this::
|
|
|
|
@override_settings()
|
|
def test_something(self):
|
|
del settings.LOGIN_URL
|
|
...
|
|
|
|
When overriding settings, make sure to handle the cases in which your app's
|
|
code uses a cache or similar feature that retains state even if the setting is
|
|
changed. Django provides the :data:`django.test.signals.setting_changed`
|
|
signal that lets you register callbacks to clean up and otherwise reset state
|
|
when settings are changed.
|
|
|
|
Django itself uses this signal to reset various data:
|
|
|
|
================================ ========================
|
|
Overridden settings Data reset
|
|
================================ ========================
|
|
USE_TZ, TIME_ZONE Databases timezone
|
|
TEMPLATE_CONTEXT_PROCESSORS Context processors cache
|
|
TEMPLATE_LOADERS Template loaders cache
|
|
SERIALIZATION_MODULES Serializers cache
|
|
LOCALE_PATHS, LANGUAGE_CODE Default translation and loaded translations
|
|
MEDIA_ROOT, DEFAULT_FILE_STORAGE Default file storage
|
|
================================ ========================
|
|
|
|
Emptying the test outbox
|
|
~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
If you use any of Django's custom ``TestCase`` classes, the test runner will
|
|
clear the contents of the test email outbox at the start of each test case.
|
|
|
|
For more detail on email services during tests, see `Email services`_ below.
|
|
|
|
.. _assertions:
|
|
|
|
Assertions
|
|
~~~~~~~~~~
|
|
|
|
As Python's normal :class:`unittest.TestCase` class implements assertion methods
|
|
such as :meth:`~unittest.TestCase.assertTrue` and
|
|
:meth:`~unittest.TestCase.assertEqual`, Django's custom :class:`TestCase` class
|
|
provides a number of custom assertion methods that are useful for testing Web
|
|
applications:
|
|
|
|
The failure messages given by most of these assertion methods can be customized
|
|
with the ``msg_prefix`` argument. This string will be prefixed to any failure
|
|
message generated by the assertion. This allows you to provide additional
|
|
details that may help you to identify the location and cause of an failure in
|
|
your test suite.
|
|
|
|
.. method:: SimpleTestCase.assertRaisesMessage(expected_exception, expected_message, callable_obj=None, *args, **kwargs)
|
|
|
|
Asserts that execution of callable ``callable_obj`` raised the
|
|
``expected_exception`` exception and that such exception has an
|
|
``expected_message`` representation. Any other outcome is reported as a
|
|
failure. Similar to unittest's :meth:`~unittest.TestCase.assertRaisesRegexp`
|
|
with the difference that ``expected_message`` isn't a regular expression.
|
|
|
|
.. method:: SimpleTestCase.assertFieldOutput(fieldclass, valid, invalid, field_args=None, field_kwargs=None, empty_value=u'')
|
|
|
|
Asserts that a form field behaves correctly with various inputs.
|
|
|
|
:param fieldclass: the class of the field to be tested.
|
|
:param valid: a dictionary mapping valid inputs to their expected cleaned
|
|
values.
|
|
:param invalid: a dictionary mapping invalid inputs to one or more raised
|
|
error messages.
|
|
:param field_args: the args passed to instantiate the field.
|
|
:param field_kwargs: the kwargs passed to instantiate the field.
|
|
:param empty_value: the expected clean output for inputs in ``empty_values``.
|
|
|
|
For example, the following code tests that an ``EmailField`` accepts
|
|
"a@a.com" as a valid email address, but rejects "aaa" with a reasonable
|
|
error message::
|
|
|
|
self.assertFieldOutput(EmailField, {'a@a.com': 'a@a.com'}, {'aaa': [u'Enter a valid email address.']})
|
|
|
|
.. method:: SimpleTestCase.assertFormError(response, form, field, errors, msg_prefix='')
|
|
|
|
Asserts that a field on a form raises the provided list of errors when
|
|
rendered on the form.
|
|
|
|
``form`` is the name the ``Form`` instance was given in the template
|
|
context.
|
|
|
|
``field`` is the name of the field on the form to check. If ``field``
|
|
has a value of ``None``, non-field errors (errors you can access via
|
|
``form.non_field_errors()``) will be checked.
|
|
|
|
``errors`` is an error string, or a list of error strings, that are
|
|
expected as a result of form validation.
|
|
|
|
.. method:: SimpleTestCase.assertFormsetError(response, formset, form_index, field, errors, msg_prefix='')
|
|
|
|
.. versionadded:: 1.6
|
|
|
|
Asserts that the ``formset`` raises the provided list of errors when
|
|
rendered.
|
|
|
|
``formset`` is the name the ``Formset`` instance was given in the template
|
|
context.
|
|
|
|
``form_index`` is the number of the form within the ``Formset``. If
|
|
``form_index`` has a value of ``None``, non-form errors (errors you can
|
|
access via ``formset.non_form_errors()``) will be checked.
|
|
|
|
``field`` is the name of the field on the form to check. If ``field``
|
|
has a value of ``None``, non-field errors (errors you can access via
|
|
``form.non_field_errors()``) will be checked.
|
|
|
|
``errors`` is an error string, or a list of error strings, that are
|
|
expected as a result of form validation.
|
|
|
|
.. method:: SimpleTestCase.assertContains(response, text, count=None, status_code=200, msg_prefix='', html=False)
|
|
|
|
Asserts that a ``Response`` instance produced the given ``status_code`` and
|
|
that ``text`` appears in the content of the response. If ``count`` is
|
|
provided, ``text`` must occur exactly ``count`` times in the response.
|
|
|
|
Set ``html`` to ``True`` to handle ``text`` as HTML. The comparison with
|
|
the response content will be based on HTML semantics instead of
|
|
character-by-character equality. Whitespace is ignored in most cases,
|
|
attribute ordering is not significant. See
|
|
:meth:`~SimpleTestCase.assertHTMLEqual` for more details.
|
|
|
|
.. method:: SimpleTestCase.assertNotContains(response, text, status_code=200, msg_prefix='', html=False)
|
|
|
|
Asserts that a ``Response`` instance produced the given ``status_code`` and
|
|
that ``text`` does not appears in the content of the response.
|
|
|
|
Set ``html`` to ``True`` to handle ``text`` as HTML. The comparison with
|
|
the response content will be based on HTML semantics instead of
|
|
character-by-character equality. Whitespace is ignored in most cases,
|
|
attribute ordering is not significant. See
|
|
:meth:`~SimpleTestCase.assertHTMLEqual` for more details.
|
|
|
|
.. method:: SimpleTestCase.assertTemplateUsed(response, template_name, msg_prefix='')
|
|
|
|
Asserts that the template with the given name was used in rendering the
|
|
response.
|
|
|
|
The name is a string such as ``'admin/index.html'``.
|
|
|
|
You can use this as a context manager, like this::
|
|
|
|
with self.assertTemplateUsed('index.html'):
|
|
render_to_string('index.html')
|
|
with self.assertTemplateUsed(template_name='index.html'):
|
|
render_to_string('index.html')
|
|
|
|
.. method:: SimpleTestCase.assertTemplateNotUsed(response, template_name, msg_prefix='')
|
|
|
|
Asserts that the template with the given name was *not* used in rendering
|
|
the response.
|
|
|
|
You can use this as a context manager in the same way as
|
|
:meth:`~SimpleTestCase.assertTemplateUsed`.
|
|
|
|
.. method:: SimpleTestCase.assertRedirects(response, expected_url, status_code=302, target_status_code=200, msg_prefix='', fetch_redirect_response=True)
|
|
|
|
Asserts that the response return a ``status_code`` redirect status, it
|
|
redirected to ``expected_url`` (including any GET data), and the final
|
|
page was received with ``target_status_code``.
|
|
|
|
If your request used the ``follow`` argument, the ``expected_url`` and
|
|
``target_status_code`` will be the url and status code for the final
|
|
point of the redirect chain.
|
|
|
|
.. versionadded:: 1.7
|
|
|
|
If ``fetch_redirect_response`` is ``False``, the final page won't be
|
|
loaded. Since the test client can't fetch externals URLs, this is
|
|
particularly useful if ``expected_url`` isn't part of your Django app.
|
|
|
|
.. versionadded:: 1.7
|
|
|
|
Scheme is handled correctly when making comparisons between two URLs. If
|
|
there isn't any scheme specified in the location where we are redirected to,
|
|
the original request's scheme is used. If present, the scheme in
|
|
``expected_url`` is the one used to make the comparisons to.
|
|
|
|
.. method:: SimpleTestCase.assertHTMLEqual(html1, html2, msg=None)
|
|
|
|
Asserts that the strings ``html1`` and ``html2`` are equal. The comparison
|
|
is based on HTML semantics. The comparison takes following things into
|
|
account:
|
|
|
|
* Whitespace before and after HTML tags is ignored.
|
|
* All types of whitespace are considered equivalent.
|
|
* All open tags are closed implicitly, e.g. when a surrounding tag is
|
|
closed or the HTML document ends.
|
|
* Empty tags are equivalent to their self-closing version.
|
|
* The ordering of attributes of an HTML element is not significant.
|
|
* Attributes without an argument are equal to attributes that equal in
|
|
name and value (see the examples).
|
|
|
|
The following examples are valid tests and don't raise any
|
|
``AssertionError``::
|
|
|
|
self.assertHTMLEqual('<p>Hello <b>world!</p>',
|
|
'''<p>
|
|
Hello <b>world! <b/>
|
|
</p>''')
|
|
self.assertHTMLEqual(
|
|
'<input type="checkbox" checked="checked" id="id_accept_terms" />',
|
|
'<input id="id_accept_terms" type='checkbox' checked>')
|
|
|
|
``html1`` and ``html2`` must be valid HTML. An ``AssertionError`` will be
|
|
raised if one of them cannot be parsed.
|
|
|
|
Output in case of error can be customized with the ``msg`` argument.
|
|
|
|
.. method:: SimpleTestCase.assertHTMLNotEqual(html1, html2, msg=None)
|
|
|
|
Asserts that the strings ``html1`` and ``html2`` are *not* equal. The
|
|
comparison is based on HTML semantics. See
|
|
:meth:`~SimpleTestCase.assertHTMLEqual` for details.
|
|
|
|
``html1`` and ``html2`` must be valid HTML. An ``AssertionError`` will be
|
|
raised if one of them cannot be parsed.
|
|
|
|
Output in case of error can be customized with the ``msg`` argument.
|
|
|
|
.. method:: SimpleTestCase.assertXMLEqual(xml1, xml2, msg=None)
|
|
|
|
Asserts that the strings ``xml1`` and ``xml2`` are equal. The
|
|
comparison is based on XML semantics. Similarly to
|
|
:meth:`~SimpleTestCase.assertHTMLEqual`, the comparison is
|
|
made on parsed content, hence only semantic differences are considered, not
|
|
syntax differences. When unvalid XML is passed in any parameter, an
|
|
``AssertionError`` is always raised, even if both string are identical.
|
|
|
|
Output in case of error can be customized with the ``msg`` argument.
|
|
|
|
.. method:: SimpleTestCase.assertXMLNotEqual(xml1, xml2, msg=None)
|
|
|
|
Asserts that the strings ``xml1`` and ``xml2`` are *not* equal. The
|
|
comparison is based on XML semantics. See
|
|
:meth:`~SimpleTestCase.assertXMLEqual` for details.
|
|
|
|
Output in case of error can be customized with the ``msg`` argument.
|
|
|
|
.. method:: SimpleTestCase.assertInHTML(needle, haystack, count=None, msg_prefix='')
|
|
|
|
Asserts that the HTML fragment ``needle`` is contained in the ``haystack`` one.
|
|
|
|
If the ``count`` integer argument is specified, then additionally the number
|
|
of ``needle`` occurrences will be strictly verified.
|
|
|
|
Whitespace in most cases is ignored, and attribute ordering is not
|
|
significant. The passed-in arguments must be valid HTML.
|
|
|
|
.. method:: SimpleTestCase.assertJSONEqual(raw, expected_data, msg=None)
|
|
|
|
Asserts that the JSON fragments ``raw`` and ``expected_data`` are equal.
|
|
Usual JSON non-significant whitespace rules apply as the heavyweight is
|
|
delegated to the :mod:`json` library.
|
|
|
|
Output in case of error can be customized with the ``msg`` argument.
|
|
|
|
.. method:: TransactionTestCase.assertQuerysetEqual(qs, values, transform=repr, ordered=True)
|
|
|
|
Asserts that a queryset ``qs`` returns a particular list of values ``values``.
|
|
|
|
The comparison of the contents of ``qs`` and ``values`` is performed using
|
|
the function ``transform``; by default, this means that the ``repr()`` of
|
|
each value is compared. Any other callable can be used if ``repr()`` doesn't
|
|
provide a unique or helpful comparison.
|
|
|
|
By default, the comparison is also ordering dependent. If ``qs`` doesn't
|
|
provide an implicit ordering, you can set the ``ordered`` parameter to
|
|
``False``, which turns the comparison into a Python set comparison.
|
|
|
|
.. versionchanged:: 1.6
|
|
|
|
The method now checks for undefined order and raises ``ValueError``
|
|
if undefined order is spotted. The ordering is seen as undefined if
|
|
the given ``qs`` isn't ordered and the comparison is against more
|
|
than one ordered values.
|
|
|
|
.. method:: TransactionTestCase.assertNumQueries(num, func, *args, **kwargs)
|
|
|
|
Asserts that when ``func`` is called with ``*args`` and ``**kwargs`` that
|
|
``num`` database queries are executed.
|
|
|
|
If a ``"using"`` key is present in ``kwargs`` it is used as the database
|
|
alias for which to check the number of queries. If you wish to call a
|
|
function with a ``using`` parameter you can do it by wrapping the call with
|
|
a ``lambda`` to add an extra parameter::
|
|
|
|
self.assertNumQueries(7, lambda: my_function(using=7))
|
|
|
|
You can also use this as a context manager::
|
|
|
|
with self.assertNumQueries(2):
|
|
Person.objects.create(name="Aaron")
|
|
Person.objects.create(name="Daniel")
|
|
|
|
.. _topics-testing-email:
|
|
|
|
Email services
|
|
--------------
|
|
|
|
If any of your Django views send email using :doc:`Django's email
|
|
functionality </topics/email>`, you probably don't want to send email each time
|
|
you run a test using that view. For this reason, Django's test runner
|
|
automatically redirects all Django-sent email to a dummy outbox. This lets you
|
|
test every aspect of sending email -- from the number of messages sent to the
|
|
contents of each message -- without actually sending the messages.
|
|
|
|
The test runner accomplishes this by transparently replacing the normal
|
|
email backend with a testing backend.
|
|
(Don't worry -- this has no effect on any other email senders outside of
|
|
Django, such as your machine's mail server, if you're running one.)
|
|
|
|
.. currentmodule:: django.core.mail
|
|
|
|
.. data:: django.core.mail.outbox
|
|
|
|
During test running, each outgoing email is saved in
|
|
``django.core.mail.outbox``. This is a simple list of all
|
|
:class:`~django.core.mail.EmailMessage` instances that have been sent.
|
|
The ``outbox`` attribute is a special attribute that is created *only* when
|
|
the ``locmem`` email backend is used. It doesn't normally exist as part of the
|
|
:mod:`django.core.mail` module and you can't import it directly. The code
|
|
below shows how to access this attribute correctly.
|
|
|
|
Here's an example test that examines ``django.core.mail.outbox`` for length
|
|
and contents::
|
|
|
|
from django.core import mail
|
|
from django.test import TestCase
|
|
|
|
class EmailTest(TestCase):
|
|
def test_send_email(self):
|
|
# Send message.
|
|
mail.send_mail('Subject here', 'Here is the message.',
|
|
'from@example.com', ['to@example.com'],
|
|
fail_silently=False)
|
|
|
|
# Test that one message has been sent.
|
|
self.assertEqual(len(mail.outbox), 1)
|
|
|
|
# Verify that the subject of the first message is correct.
|
|
self.assertEqual(mail.outbox[0].subject, 'Subject here')
|
|
|
|
As noted :ref:`previously <emptying-test-outbox>`, the test outbox is emptied
|
|
at the start of every test in a Django ``*TestCase``. To empty the outbox
|
|
manually, assign the empty list to ``mail.outbox``::
|
|
|
|
from django.core import mail
|
|
|
|
# Empty the test outbox
|
|
mail.outbox = []
|
|
|
|
.. _skipping-tests:
|
|
|
|
Skipping tests
|
|
--------------
|
|
|
|
.. currentmodule:: django.test
|
|
|
|
The unittest library provides the :func:`@skipIf <unittest.skipIf>` and
|
|
:func:`@skipUnless <unittest.skipUnless>` decorators to allow you to skip tests
|
|
if you know ahead of time that those tests are going to fail under certain
|
|
conditions.
|
|
|
|
For example, if your test requires a particular optional library in order to
|
|
succeed, you could decorate the test case with :func:`@skipIf
|
|
<unittest.skipIf>`. Then, the test runner will report that the test wasn't
|
|
executed and why, instead of failing the test or omitting the test altogether.
|
|
|
|
To supplement these test skipping behaviors, Django provides two
|
|
additional skip decorators. Instead of testing a generic boolean,
|
|
these decorators check the capabilities of the database, and skip the
|
|
test if the database doesn't support a specific named feature.
|
|
|
|
The decorators use a string identifier to describe database features.
|
|
This string corresponds to attributes of the database connection
|
|
features class. See ``django.db.backends.BaseDatabaseFeatures``
|
|
class for a full list of database features that can be used as a basis
|
|
for skipping tests.
|
|
|
|
.. function:: skipIfDBFeature(feature_name_string)
|
|
|
|
Skip the decorated test or ``TestCase`` if the named database feature is
|
|
supported.
|
|
|
|
For example, the following test will not be executed if the database
|
|
supports transactions (e.g., it would *not* run under PostgreSQL, but
|
|
it would under MySQL with MyISAM tables)::
|
|
|
|
class MyTests(TestCase):
|
|
@skipIfDBFeature('supports_transactions')
|
|
def test_transaction_behavior(self):
|
|
# ... conditional test code
|
|
|
|
.. versionchanged:: 1.7
|
|
|
|
``skipIfDBFeature`` can now be used to decorate a ``TestCase`` class.
|
|
|
|
.. function:: skipUnlessDBFeature(feature_name_string)
|
|
|
|
Skip the decorated test or ``TestCase`` if the named database feature is *not*
|
|
supported.
|
|
|
|
For example, the following test will only be executed if the database
|
|
supports transactions (e.g., it would run under PostgreSQL, but *not*
|
|
under MySQL with MyISAM tables)::
|
|
|
|
class MyTests(TestCase):
|
|
@skipUnlessDBFeature('supports_transactions')
|
|
def test_transaction_behavior(self):
|
|
# ... conditional test code
|
|
|
|
.. versionchanged:: 1.7
|
|
|
|
``skipUnlessDBFeature`` can now be used to decorate a ``TestCase`` class.
|