1
0
mirror of https://github.com/django/django.git synced 2025-01-10 18:36:05 +00:00
django/docs/topics/i18n/translation.txt
Marti Raudsepp 11d453bcad Various documentation typo/spelling fixes
Errors detected by Topy (https://github.com/intgr/topy), all changes
verified by hand.
2014-04-23 02:31:49 +03:00

1808 lines
67 KiB
Plaintext

===========
Translation
===========
.. module:: django.utils.translation
Overview
========
In order to make a Django project translatable, you have to add a minimal
number of hooks to your Python code and templates. These hooks are called
:term:`translation strings <translation string>`. They tell Django: "This text
should be translated into the end user's language, if a translation for this
text is available in that language." It's your responsibility to mark
translatable strings; the system can only translate strings it knows about.
Django then provides utilities to extract the translation strings into a
:term:`message file`. This file is a convenient way for translators to provide
the equivalent of the translation strings in the target language. Once the
translators have filled in the message file, it must be compiled. This process
relies on the GNU gettext toolset.
Once this is done, Django takes care of translating Web apps on the fly in each
available language, according to users' language preferences.
Django's internationalization hooks are on by default, and that means there's a
bit of i18n-related overhead in certain places of the framework. If you don't
use internationalization, you should take the two seconds to set
:setting:`USE_I18N = False <USE_I18N>` in your settings file. Then Django will
make some optimizations so as not to load the internationalization machinery.
You'll probably also want to remove ``'django.core.context_processors.i18n'``
from your :setting:`TEMPLATE_CONTEXT_PROCESSORS` setting.
.. note::
There is also an independent but related :setting:`USE_L10N` setting that
controls if Django should implement format localization. See
:doc:`/topics/i18n/formatting` for more details.
.. note::
Make sure you've activated translation for your project (the fastest way is
to check if :setting:`MIDDLEWARE_CLASSES` includes
:mod:`django.middleware.locale.LocaleMiddleware`). If you haven't yet,
see :ref:`how-django-discovers-language-preference`.
Internationalization: in Python code
====================================
Standard translation
--------------------
Specify a translation string by using the function
:func:`~django.utils.translation.ugettext`. It's convention to import this
as a shorter alias, ``_``, to save typing.
.. note::
Python's standard library ``gettext`` module installs ``_()`` into the
global namespace, as an alias for ``gettext()``. In Django, we have chosen
not to follow this practice, for a couple of reasons:
1. For international character set (Unicode) support,
:func:`~django.utils.translation.ugettext` is more useful than
``gettext()``. Sometimes, you should be using
:func:`~django.utils.translation.ugettext_lazy` as the default
translation method for a particular file. Without ``_()`` in the
global namespace, the developer has to think about which is the
most appropriate translation function.
2. The underscore character (``_``) is used to represent "the previous
result" in Python's interactive shell and doctest tests. Installing a
global ``_()`` function causes interference. Explicitly importing
``ugettext()`` as ``_()`` avoids this problem.
.. highlightlang:: python
In this example, the text ``"Welcome to my site."`` is marked as a translation
string::
from django.utils.translation import ugettext as _
from django.http import HttpResponse
def my_view(request):
output = _("Welcome to my site.")
return HttpResponse(output)
Obviously, you could code this without using the alias. This example is
identical to the previous one::
from django.utils.translation import ugettext
from django.http import HttpResponse
def my_view(request):
output = ugettext("Welcome to my site.")
return HttpResponse(output)
Translation works on computed values. This example is identical to the previous
two::
def my_view(request):
words = ['Welcome', 'to', 'my', 'site.']
output = _(' '.join(words))
return HttpResponse(output)
Translation works on variables. Again, here's an identical example::
def my_view(request):
sentence = 'Welcome to my site.'
output = _(sentence)
return HttpResponse(output)
(The caveat with using variables or computed values, as in the previous two
examples, is that Django's translation-string-detecting utility,
:djadmin:`django-admin.py makemessages <makemessages>`, won't be able to find
these strings. More on :djadmin:`makemessages` later.)
The strings you pass to ``_()`` or ``ugettext()`` can take placeholders,
specified with Python's standard named-string interpolation syntax. Example::
def my_view(request, m, d):
output = _('Today is %(month)s %(day)s.') % {'month': m, 'day': d}
return HttpResponse(output)
This technique lets language-specific translations reorder the placeholder
text. For example, an English translation may be ``"Today is November 26."``,
while a Spanish translation may be ``"Hoy es 26 de Noviembre."`` -- with the
month and the day placeholders swapped.
For this reason, you should use named-string interpolation (e.g., ``%(day)s``)
instead of positional interpolation (e.g., ``%s`` or ``%d``) whenever you
have more than a single parameter. If you used positional interpolation,
translations wouldn't be able to reorder placeholder text.
.. _translator-comments:
Comments for translators
------------------------
If you would like to give translators hints about a translatable string, you
can add a comment prefixed with the ``Translators`` keyword on the line
preceding the string, e.g.::
def my_view(request):
# Translators: This message appears on the home page only
output = ugettext("Welcome to my site.")
The comment will then appear in the resulting ``.po`` file associated with the
translatable construct located below it and should also be displayed by most
translation tools.
.. note:: Just for completeness, this is the corresponding fragment of the
resulting ``.po`` file:
.. code-block:: po
#. Translators: This message appears on the home page only
# path/to/python/file.py:123
msgid "Welcome to my site."
msgstr ""
This also works in templates. See :ref:`translator-comments-in-templates` for
more details.
Marking strings as no-op
------------------------
Use the function :func:`django.utils.translation.ugettext_noop()` to mark a
string as a translation string without translating it. The string is later
translated from a variable.
Use this if you have constant strings that should be stored in the source
language because they are exchanged over systems or users -- such as strings
in a database -- but should be translated at the last possible point in time,
such as when the string is presented to the user.
Pluralization
-------------
Use the function :func:`django.utils.translation.ungettext()` to specify
pluralized messages.
``ungettext`` takes three arguments: the singular translation string, the plural
translation string and the number of objects.
This function is useful when you need your Django application to be localizable
to languages where the number and complexity of `plural forms
<http://www.gnu.org/software/gettext/manual/gettext.html#Plural-forms>`_ is
greater than the two forms used in English ('object' for the singular and
'objects' for all the cases where ``count`` is different from one, irrespective
of its value.)
For example::
from django.utils.translation import ungettext
from django.http import HttpResponse
def hello_world(request, count):
page = ungettext(
'there is %(count)d object',
'there are %(count)d objects',
count) % {
'count': count,
}
return HttpResponse(page)
In this example the number of objects is passed to the translation
languages as the ``count`` variable.
Note that pluralization is complicated and works differently in each language.
Comparing ``count`` to 1 isn't always the correct rule. This code looks
sophisticated, but will produce incorrect results for some languages::
from django.utils.translation import ungettext
from myapp.models import Report
count = Report.objects.count()
if count == 1:
name = Report._meta.verbose_name
else:
name = Report._meta.verbose_name_plural
text = ungettext(
'There is %(count)d %(name)s available.',
'There are %(count)d %(name)s available.',
count
) % {
'count': count,
'name': name
}
Don't try to implement your own singular-or-plural logic, it won't be correct.
In a case like this, consider something like the following::
text = ungettext(
'There is %(count)d %(name)s object available.',
'There are %(count)d %(name)s objects available.',
count
) % {
'count': count,
'name': Report._meta.verbose_name,
}
.. _pluralization-var-notes:
.. note::
When using ``ungettext()``, make sure you use a single name for every
extrapolated variable included in the literal. In the examples above, note
how we used the ``name`` Python variable in both translation strings. This
example, besides being incorrect in some languages as noted above, would
fail::
text = ungettext(
'There is %(count)d %(name)s available.',
'There are %(count)d %(plural_name)s available.',
count
) % {
'count': Report.objects.count(),
'name': Report._meta.verbose_name,
'plural_name': Report._meta.verbose_name_plural
}
You would get an error when running :djadmin:`django-admin.py
compilemessages <compilemessages>`::
a format specification for argument 'name', as in 'msgstr[0]', doesn't exist in 'msgid'
.. _contextual-markers:
Contextual markers
------------------
Sometimes words have several meanings, such as ``"May"`` in English, which
refers to a month name and to a verb. To enable translators to translate
these words correctly in different contexts, you can use the
:func:`django.utils.translation.pgettext()` function, or the
:func:`django.utils.translation.npgettext()` function if the string needs
pluralization. Both take a context string as the first variable.
In the resulting ``.po`` file, the string will then appear as often as there are
different contextual markers for the same string (the context will appear on the
``msgctxt`` line), allowing the translator to give a different translation for
each of them.
For example::
from django.utils.translation import pgettext
month = pgettext("month name", "May")
or::
from django.db import models
from django.utils.translation import pgettext_lazy
class MyThing(models.Model):
name = models.CharField(help_text=pgettext_lazy(
'help text for MyThing model', 'This is the help text'))
will appear in the ``.po`` file as:
.. code-block:: po
msgctxt "month name"
msgid "May"
msgstr ""
Contextual markers are also supported by the :ttag:`trans` and
:ttag:`blocktrans` template tags.
.. _lazy-translations:
Lazy translation
----------------
Use the lazy versions of translation functions in
:mod:`django.utils.translation` (easily recognizable by the ``lazy`` suffix in
their names) to translate strings lazily -- when the value is accessed rather
than when they're called.
These functions store a lazy reference to the string -- not the actual
translation. The translation itself will be done when the string is used in a
string context, such as in template rendering.
This is essential when calls to these functions are located in code paths that
are executed at module load time.
This is something that can easily happen when defining models, forms and
model forms, because Django implements these such that their fields are
actually class-level attributes. For that reason, make sure to use lazy
translations in the following cases:
Model fields and relationships ``verbose_name`` and ``help_text`` option values
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For example, to translate the help text of the *name* field in the following
model, do the following::
from django.db import models
from django.utils.translation import ugettext_lazy as _
class MyThing(models.Model):
name = models.CharField(help_text=_('This is the help text'))
You can mark names of :class:`~django.db.models.ForeignKey`,
:class:`~django.db.models.ManyToManyField` or
:class:`~django.db.models.OneToOneField` relationship as translatable by using
their :attr:`~django.db.models.Options.verbose_name` options::
class MyThing(models.Model):
kind = models.ForeignKey(ThingKind, related_name='kinds',
verbose_name=_('kind'))
Just like you would do in :attr:`~django.db.models.Options.verbose_name` you
should provide a lowercase verbose name text for the relation as Django will
automatically titlecase it when required.
Model verbose names values
~~~~~~~~~~~~~~~~~~~~~~~~~~
It is recommended to always provide explicit
:attr:`~django.db.models.Options.verbose_name` and
:attr:`~django.db.models.Options.verbose_name_plural` options rather than
relying on the fallback English-centric and somewhat naïve determination of
verbose names Django performs by looking at the model's class name::
from django.db import models
from django.utils.translation import ugettext_lazy as _
class MyThing(models.Model):
name = models.CharField(_('name'), help_text=_('This is the help text'))
class Meta:
verbose_name = _('my thing')
verbose_name_plural = _('my things')
Model methods ``short_description`` attribute values
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For model methods, you can provide translations to Django and the admin site
with the ``short_description`` attribute::
from django.db import models
from django.utils.translation import ugettext_lazy as _
class MyThing(models.Model):
kind = models.ForeignKey(ThingKind, related_name='kinds',
verbose_name=_('kind'))
def is_mouse(self):
return self.kind.type == MOUSE_TYPE
is_mouse.short_description = _('Is it a mouse?')
Working with lazy translation objects
-------------------------------------
The result of a ``ugettext_lazy()`` call can be used wherever you would use a
unicode string (an object with type ``unicode``) in Python. If you try to use
it where a bytestring (a ``str`` object) is expected, things will not work as
expected, since a ``ugettext_lazy()`` object doesn't know how to convert
itself to a bytestring. You can't use a unicode string inside a bytestring,
either, so this is consistent with normal Python behavior. For example::
# This is fine: putting a unicode proxy into a unicode string.
"Hello %s" % ugettext_lazy("people")
# This will not work, since you cannot insert a unicode object
# into a bytestring (nor can you insert our unicode proxy there)
b"Hello %s" % ugettext_lazy("people")
If you ever see output that looks like ``"hello
<django.utils.functional...>"``, you have tried to insert the result of
``ugettext_lazy()`` into a bytestring. That's a bug in your code.
If you don't like the long ``ugettext_lazy`` name, you can just alias it as
``_`` (underscore), like so::
from django.db import models
from django.utils.translation import ugettext_lazy as _
class MyThing(models.Model):
name = models.CharField(help_text=_('This is the help text'))
Using ``ugettext_lazy()`` and ``ungettext_lazy()`` to mark strings in models
and utility functions is a common operation. When you're working with these
objects elsewhere in your code, you should ensure that you don't accidentally
convert them to strings, because they should be converted as late as possible
(so that the correct locale is in effect). This necessitates the use of the
helper function described next.
.. _lazy-plural-translations:
Lazy translations and plural
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When using lazy translation for a plural string (``[u]n[p]gettext_lazy``), you
generally don't know the ``number`` argument at the time of the string
definition. Therefore, you are authorized to pass a key name instead of an
integer as the ``number`` argument. Then ``number`` will be looked up in the
dictionary under that key during string interpolation. Here's example::
from django import forms
from django.utils.translation import ugettext_lazy
class MyForm(forms.Form):
error_message = ungettext_lazy("You only provided %(num)d argument",
"You only provided %(num)d arguments", 'num')
def clean(self):
# ...
if error:
raise forms.ValidationError(self.error_message % {'num': number})
If the string contains exactly one unnamed placeholder, you can interpolate
directly with the ``number`` argument::
class MyForm(forms.Form):
error_message = ungettext_lazy("You provided %d argument",
"You provided %d arguments")
def clean(self):
# ...
if error:
raise forms.ValidationError(self.error_message % number)
Joining strings: string_concat()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Standard Python string joins (``''.join([...])``) will not work on lists
containing lazy translation objects. Instead, you can use
:func:`django.utils.translation.string_concat()`, which creates a lazy object
that concatenates its contents *and* converts them to strings only when the
result is included in a string. For example::
from django.utils.translation import string_concat
from django.utils.translation import ugettext_lazy
...
name = ugettext_lazy('John Lennon')
instrument = ugettext_lazy('guitar')
result = string_concat(name, ': ', instrument)
In this case, the lazy translations in ``result`` will only be converted to
strings when ``result`` itself is used in a string (usually at template
rendering time).
Other uses of lazy in delayed translations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For any other case where you would like to delay the translation, but have to
pass the translatable string as argument to another function, you can wrap
this function inside a lazy call yourself. For example::
from django.utils import six # Python 3 compatibility
from django.utils.functional import lazy
from django.utils.safestring import mark_safe
from django.utils.translation import ugettext_lazy as _
mark_safe_lazy = lazy(mark_safe, six.text_type)
And then later::
lazy_string = mark_safe_lazy(_("<p>My <strong>string!</strong></p>"))
Localized names of languages
----------------------------
.. function:: get_language_info
The ``get_language_info()`` function provides detailed information about
languages::
>>> from django.utils.translation import get_language_info
>>> li = get_language_info('de')
>>> print(li['name'], li['name_local'], li['bidi'])
German Deutsch False
The ``name`` and ``name_local`` attributes of the dictionary contain the name of
the language in English and in the language itself, respectively. The ``bidi``
attribute is True only for bi-directional languages.
The source of the language information is the ``django.conf.locale`` module.
Similar access to this information is available for template code. See below.
.. _specifying-translation-strings-in-template-code:
Internationalization: in template code
======================================
.. highlightlang:: html+django
Translations in :doc:`Django templates </topics/templates>` uses two template
tags and a slightly different syntax than in Python code. To give your template
access to these tags, put ``{% load i18n %}`` toward the top of your template.
As with all template tags, this tag needs to be loaded in all templates which
use translations, even those templates that extend from other templates which
have already loaded the ``i18n`` tag.
.. templatetag:: trans
``trans`` template tag
----------------------
The ``{% trans %}`` template tag translates either a constant string
(enclosed in single or double quotes) or variable content::
<title>{% trans "This is the title." %}</title>
<title>{% trans myvar %}</title>
If the ``noop`` option is present, variable lookup still takes place but the
translation is skipped. This is useful when "stubbing out" content that will
require translation in the future::
<title>{% trans "myvar" noop %}</title>
Internally, inline translations use an
:func:`~django.utils.translation.ugettext` call.
In case a template var (``myvar`` above) is passed to the tag, the tag will
first resolve such variable to a string at run-time and then look up that
string in the message catalogs.
It's not possible to mix a template variable inside a string within ``{% trans
%}``. If your translations require strings with variables (placeholders), use
:ttag:`{% blocktrans %}<blocktrans>` instead.
If you'd like to retrieve a translated string without displaying it, you can
use the following syntax::
{% trans "This is the title" as the_title %}
<title>{{ the_title }}</title>
<meta name="description" content="{{ the_title }}">
In practice you'll use this to get strings that are used in multiple places
or should be used as arguments for other template tags or filters::
{% trans "starting point" as start %}
{% trans "end point" as end %}
{% trans "La Grande Boucle" as race %}
<h1>
<a href="/" title="{% blocktrans %}Back to '{{ race }}' homepage{% endblocktrans %}">{{ race }}</a>
</h1>
<p>
{% for stage in tour_stages %}
{% cycle start end %}: {{ stage }}{% if forloop.counter|divisibleby:2 %}<br />{% else %}, {% endif %}
{% endfor %}
</p>
``{% trans %}`` also supports :ref:`contextual markers<contextual-markers>`
using the ``context`` keyword:
.. code-block:: html+django
{% trans "May" context "month name" %}
.. templatetag:: blocktrans
``blocktrans`` template tag
---------------------------
Contrarily to the :ttag:`trans` tag, the ``blocktrans`` tag allows you to mark
complex sentences consisting of literals and variable content for translation
by making use of placeholders::
{% blocktrans %}This string will have {{ value }} inside.{% endblocktrans %}
To translate a template expression -- say, accessing object attributes or
using template filters -- you need to bind the expression to a local variable
for use within the translation block. Examples::
{% blocktrans with amount=article.price %}
That will cost $ {{ amount }}.
{% endblocktrans %}
{% blocktrans with myvar=value|filter %}
This will have {{ myvar }} inside.
{% endblocktrans %}
You can use multiple expressions inside a single ``blocktrans`` tag::
{% blocktrans with book_t=book|title author_t=author|title %}
This is {{ book_t }} by {{ author_t }}
{% endblocktrans %}
.. note:: The previous more verbose format is still supported:
``{% blocktrans with book|title as book_t and author|title as author_t %}``
If resolving one of the block arguments fails, blocktrans will fall back to
the default language by deactivating the currently active language
temporarily with the :func:`~django.utils.translation.deactivate_all`
function.
This tag also provides for pluralization. To use it:
* Designate and bind a counter value with the name ``count``. This value will
be the one used to select the right plural form.
* Specify both the singular and plural forms separating them with the
``{% plural %}`` tag within the ``{% blocktrans %}`` and
``{% endblocktrans %}`` tags.
An example::
{% blocktrans count counter=list|length %}
There is only one {{ name }} object.
{% plural %}
There are {{ counter }} {{ name }} objects.
{% endblocktrans %}
A more complex example::
{% blocktrans with amount=article.price count years=i.length %}
That will cost $ {{ amount }} per year.
{% plural %}
That will cost $ {{ amount }} per {{ years }} years.
{% endblocktrans %}
When you use both the pluralization feature and bind values to local variables
in addition to the counter value, keep in mind that the ``blocktrans``
construct is internally converted to an ``ungettext`` call. This means the
same :ref:`notes regarding ungettext variables <pluralization-var-notes>`
apply.
Reverse URL lookups cannot be carried out within the ``blocktrans`` and should
be retrieved (and stored) beforehand::
{% url 'path.to.view' arg arg2 as the_url %}
{% blocktrans %}
This is a URL: {{ the_url }}
{% endblocktrans %}
``{% blocktrans %}`` also supports :ref:`contextual
markers<contextual-markers>` using the ``context`` keyword:
.. code-block:: html+django
{% blocktrans with name=user.username context "greeting" %}Hi {{ name }}{% endblocktrans %}
Another feature ``{% blocktrans %}`` supports is the ``trimmed`` option. This
option will remove newline characters from the beginning and the end of the
content of the ``{% blocktrans %}`` tag, replace any whitespace at the beginning
and end of a line and merge all lines into one using a space character to
separate them. This is quite useful for indenting the content of a ``{%
blocktrans %}`` tag without having the indentation characters end up in the
corresponding entry in the PO file, which makes the translation process easier.
For instance, the following ``{% blocktrans %}`` tag::
{% blocktrans trimmed %}
First sentence.
Second paragraph.
{% endblocktrans %}
will result in the entry ``"First sentence. Second paragraph."`` in the PO file,
compared to ``"\n First sentence.\n Second sentence.\n"``, if the ``trimmed``
option had not been specified.
.. versionchanged:: 1.7
The ``trimmed`` option was added.
String literals passed to tags and filters
------------------------------------------
You can translate string literals passed as arguments to tags and filters
by using the familiar ``_()`` syntax::
{% some_tag _("Page not found") value|yesno:_("yes,no") %}
In this case, both the tag and the filter will see the translated string,
so they don't need to be aware of translations.
.. note::
In this example, the translation infrastructure will be passed the string
``"yes,no"``, not the individual strings ``"yes"`` and ``"no"``. The
translated string will need to contain the comma so that the filter
parsing code knows how to split up the arguments. For example, a German
translator might translate the string ``"yes,no"`` as ``"ja,nein"``
(keeping the comma intact).
.. _translator-comments-in-templates:
Comments for translators in templates
-------------------------------------
Just like with :ref:`Python code <translator-comments>`, these notes for
translators can be specified using comments, either with the :ttag:`comment`
tag:
.. code-block:: html+django
{% comment %}Translators: View verb{% endcomment %}
{% trans "View" %}
{% comment %}Translators: Short intro blurb{% endcomment %}
<p>{% blocktrans %}A multiline translatable
literal.{% endblocktrans %}</p>
or with the ``{#`` ... ``#}`` :ref:`one-line comment constructs <template-comments>`:
.. code-block:: html+django
{# Translators: Label of a button that triggers search #}
<button type="submit">{% trans "Go" %}</button>
{# Translators: This is a text of the base template #}
{% blocktrans %}Ambiguous translatable block of text{% endblocktrans %}
.. note:: Just for completeness, these are the corresponding fragments of the
resulting ``.po`` file:
.. code-block:: po
#. Translators: View verb
# path/to/template/file.html:10
msgid "View"
msgstr ""
#. Translators: Short intro blurb
# path/to/template/file.html:13
msgid ""
"A multiline translatable"
"literal."
msgstr ""
# ...
#. Translators: Label of a button that triggers search
# path/to/template/file.html:100
msgid "Go"
msgstr ""
#. Translators: This is a text of the base template
# path/to/template/file.html:103
msgid "Ambiguous translatable block of text"
msgstr ""
.. templatetag:: language
Switching language in templates
-------------------------------
If you want to select a language within a template, you can use the
``language`` template tag:
.. code-block:: html+django
{% load i18n %}
{% get_current_language as LANGUAGE_CODE %}
<!-- Current language: {{ LANGUAGE_CODE }} -->
<p>{% trans "Welcome to our page" %}</p>
{% language 'en' %}
{% get_current_language as LANGUAGE_CODE %}
<!-- Current language: {{ LANGUAGE_CODE }} -->
<p>{% trans "Welcome to our page" %}</p>
{% endlanguage %}
While the first occurrence of "Welcome to our page" uses the current language,
the second will always be in English.
.. _template-translation-vars:
Other tags
----------
Each ``RequestContext`` has access to three translation-specific variables:
* ``LANGUAGES`` is a list of tuples in which the first element is the
:term:`language code` and the second is the language name (translated into
the currently active locale).
* ``LANGUAGE_CODE`` is the current user's preferred language, as a string.
Example: ``en-us``. (See :ref:`how-django-discovers-language-preference`.)
* ``LANGUAGE_BIDI`` is the current locale's direction. If True, it's a
right-to-left language, e.g.: Hebrew, Arabic. If False it's a
left-to-right language, e.g.: English, French, German etc.
If you don't use the ``RequestContext`` extension, you can get those values with
three tags::
{% get_current_language as LANGUAGE_CODE %}
{% get_available_languages as LANGUAGES %}
{% get_current_language_bidi as LANGUAGE_BIDI %}
These tags also require a ``{% load i18n %}``.
You can also retrieve information about any of the available languages using
provided template tags and filters. To get information about a single language,
use the ``{% get_language_info %}`` tag::
{% get_language_info for LANGUAGE_CODE as lang %}
{% get_language_info for "pl" as lang %}
You can then access the information::
Language code: {{ lang.code }}<br />
Name of language: {{ lang.name_local }}<br />
Name in English: {{ lang.name }}<br />
Bi-directional: {{ lang.bidi }}
You can also use the ``{% get_language_info_list %}`` template tag to retrieve
information for a list of languages (e.g. active languages as specified in
:setting:`LANGUAGES`). See :ref:`the section about the set_language redirect
view <set_language-redirect-view>` for an example of how to display a language
selector using ``{% get_language_info_list %}``.
In addition to :setting:`LANGUAGES` style nested tuples,
``{% get_language_info_list %}`` supports simple lists of language codes.
If you do this in your view:
.. code-block:: python
return render_to_response('mytemplate.html', {
'available_languages': ['en', 'es', 'fr'],
}, RequestContext(request))
you can iterate over those languages in the template::
{% get_language_info_list for available_languages as langs %}
{% for lang in langs %} ... {% endfor %}
There are also simple filters available for convenience:
* ``{{ LANGUAGE_CODE|language_name }}`` ("German")
* ``{{ LANGUAGE_CODE|language_name_local }}`` ("Deutsch")
* ``{{ LANGUAGE_CODE|bidi }}`` (False)
.. _Django templates: ../templates_python/
Internationalization: in JavaScript code
========================================
.. highlightlang:: python
Adding translations to JavaScript poses some problems:
* JavaScript code doesn't have access to a ``gettext`` implementation.
* JavaScript code doesn't have access to ``.po`` or ``.mo`` files; they need to
be delivered by the server.
* The translation catalogs for JavaScript should be kept as small as
possible.
Django provides an integrated solution for these problems: It passes the
translations into JavaScript, so you can call ``gettext``, etc., from within
JavaScript.
.. _javascript_catalog-view:
The ``javascript_catalog`` view
-------------------------------
.. module:: django.views.i18n
.. function:: javascript_catalog(request, domain='djangojs', packages=None)
The main solution to these problems is the
:meth:`django.views.i18n.javascript_catalog` view, which sends out a JavaScript
code library with functions that mimic the ``gettext`` interface, plus an array
of translation strings. Those translation strings are taken from applications or
Django core, according to what you specify in either the ``info_dict`` or the
URL. Paths listed in :setting:`LOCALE_PATHS` are also included.
You hook it up like this::
from django.views.i18n import javascript_catalog
js_info_dict = {
'packages': ('your.app.package',),
}
urlpatterns = [
url(r'^jsi18n/$', javascript_catalog, js_info_dict),
]
Each string in ``packages`` should be in Python dotted-package syntax (the
same format as the strings in :setting:`INSTALLED_APPS`) and should refer to a
package that contains a ``locale`` directory. If you specify multiple packages,
all those catalogs are merged into one catalog. This is useful if you have
JavaScript that uses strings from different applications.
The precedence of translations is such that the packages appearing later in the
``packages`` argument have higher precedence than the ones appearing at the
beginning, this is important in the case of clashing translations for the same
literal.
By default, the view uses the ``djangojs`` gettext domain. This can be
changed by altering the ``domain`` argument.
You can make the view dynamic by putting the packages into the URL pattern::
urlpatterns = [
url(r'^jsi18n/(?P<packages>\S+?)/$', javascript_catalog),
]
With this, you specify the packages as a list of package names delimited by '+'
signs in the URL. This is especially useful if your pages use code from
different apps and this changes often and you don't want to pull in one big
catalog file. As a security measure, these values can only be either
``django.conf`` or any package from the :setting:`INSTALLED_APPS` setting.
The JavaScript translations found in the paths listed in the
:setting:`LOCALE_PATHS` setting are also always included. To keep consistency
with the translations lookup order algorithm used for Python and templates, the
directories listed in :setting:`LOCALE_PATHS` have the highest precedence with
the ones appearing first having higher precedence than the ones appearing
later.
Using the JavaScript translation catalog
----------------------------------------
.. highlightlang:: javascript
To use the catalog, just pull in the dynamically generated script like this:
.. code-block:: html+django
<script type="text/javascript" src="{% url 'django.views.i18n.javascript_catalog' %}"></script>
This uses reverse URL lookup to find the URL of the JavaScript catalog view.
When the catalog is loaded, your JavaScript code can use the standard
``gettext`` interface to access it::
document.write(gettext('this is to be translated'));
There is also an ``ngettext`` interface::
var object_cnt = 1 // or 0, or 2, or 3, ...
s = ngettext('literal for the singular case',
'literal for the plural case', object_cnt);
and even a string interpolation function::
function interpolate(fmt, obj, named);
The interpolation syntax is borrowed from Python, so the ``interpolate``
function supports both positional and named interpolation:
* Positional interpolation: ``obj`` contains a JavaScript Array object
whose elements values are then sequentially interpolated in their
corresponding ``fmt`` placeholders in the same order they appear.
For example::
fmts = ngettext('There is %s object. Remaining: %s',
'There are %s objects. Remaining: %s', 11);
s = interpolate(fmts, [11, 20]);
// s is 'There are 11 objects. Remaining: 20'
* Named interpolation: This mode is selected by passing the optional
boolean ``named`` parameter as true. ``obj`` contains a JavaScript
object or associative array. For example::
d = {
count: 10,
total: 50
};
fmts = ngettext('Total: %(total)s, there is %(count)s object',
'there are %(count)s of a total of %(total)s objects', d.count);
s = interpolate(fmts, d, true);
You shouldn't go over the top with string interpolation, though: this is still
JavaScript, so the code has to make repeated regular-expression substitutions.
This isn't as fast as string interpolation in Python, so keep it to those
cases where you really need it (for example, in conjunction with ``ngettext``
to produce proper pluralizations).
Note on performance
-------------------
The :func:`~django.views.i18n.javascript_catalog` view generates the catalog
from ``.mo`` files on every request. Since its output is constant — at least
for a given version of a site — it's a good candidate for caching.
Server-side caching will reduce CPU load. It's easily implemented with the
:func:`~django.views.decorators.cache.cache_page` decorator. To trigger cache
invalidation when your translations change, provide a version-dependent key
prefix, as shown in the example below, or map the view at a version-dependent
URL.
.. code-block:: python
from django.views.decorators.cache import cache_page
from django.views.i18n import javascript_catalog
# The value returned by get_version() must change when translations change.
@cache_page(86400, key_prefix='js18n-%s' % get_version())
def cached_javascript_catalog(request, domain='djangojs', packages=None):
return javascript_catalog(request, domain, packages)
Client-side caching will save bandwidth and make your site load faster. If
you're using ETags (:setting:`USE_ETAGS = True <USE_ETAGS>`), you're already
covered. Otherwise, you can apply :ref:`conditional decorators
<conditional-decorators>`. In the following example, the cache is invalidated
whenever your restart your application server.
.. code-block:: python
from django.utils import timezone
from django.views.decorators.http import last_modified
from django.views.i18n import javascript_catalog
last_modified_date = timezone.now()
@last_modified(lambda req, **kw: last_modified_date)
def cached_javascript_catalog(request, domain='djangojs', packages=None):
return javascript_catalog(request, domain, packages)
You can even pre-generate the javascript catalog as part of your deployment
procedure and serve it as a static file. This radical technique is implemented
in django-statici18n_.
.. _django-statici18n: http://django-statici18n.readthedocs.org/en/latest/
.. _url-internationalization:
Internationalization: in URL patterns
=====================================
.. module:: django.conf.urls.i18n
Django provides two mechanisms to internationalize URL patterns:
* Adding the language prefix to the root of the URL patterns to make it
possible for :class:`~django.middleware.locale.LocaleMiddleware` to detect
the language to activate from the requested URL.
* Making URL patterns themselves translatable via the
:func:`django.utils.translation.ugettext_lazy()` function.
.. warning::
Using either one of these features requires that an active language be set
for each request; in other words, you need to have
:class:`django.middleware.locale.LocaleMiddleware` in your
:setting:`MIDDLEWARE_CLASSES` setting.
Language prefix in URL patterns
-------------------------------
.. function:: i18n_patterns(prefix, pattern_description, ...)
.. deprecated:: 1.8
The ``prefix`` argument to ``i18n_patterns()`` has been deprecated and will
not be supported in Django 2.0. Simply pass a list of
:func:`django.conf.urls.url` instances instead.
This function can be used in your root URLconf and Django will automatically
prepend the current active language code to all url patterns defined within
:func:`~django.conf.urls.i18n.i18n_patterns`. Example URL patterns::
from django.conf.urls import include, url
from django.conf.urls.i18n import i18n_patterns
urlpatterns = [
url(r'^sitemap\.xml$', 'sitemap.view', name='sitemap_xml'),
]
news_patterns = [
url(r'^$', 'news.views.index', name='index'),
url(r'^category/(?P<slug>[\w-]+)/$', 'news.views.category', name='category'),
url(r'^(?P<slug>[\w-]+)/$', 'news.views.details', name='detail'),
]
urlpatterns += i18n_patterns(
url(r'^about/$', 'about.view', name='about'),
url(r'^news/', include(news_patterns, namespace='news')),
)
After defining these URL patterns, Django will automatically add the
language prefix to the URL patterns that were added by the ``i18n_patterns``
function. Example::
from django.core.urlresolvers import reverse
from django.utils.translation import activate
>>> activate('en')
>>> reverse('sitemap_xml')
'/sitemap.xml'
>>> reverse('news:index')
'/en/news/'
>>> activate('nl')
>>> reverse('news:detail', kwargs={'slug': 'news-slug'})
'/nl/news/news-slug/'
.. warning::
:func:`~django.conf.urls.i18n.i18n_patterns` is only allowed in your root
URLconf. Using it within an included URLconf will throw an
:exc:`~django.core.exceptions.ImproperlyConfigured` exception.
.. warning::
Ensure that you don't have non-prefixed URL patterns that might collide
with an automatically-added language prefix.
Translating URL patterns
------------------------
URL patterns can also be marked translatable using the
:func:`~django.utils.translation.ugettext_lazy` function. Example::
from django.conf.urls import include, url
from django.conf.urls.i18n import i18n_patterns
from django.utils.translation import ugettext_lazy as _
urlpatterns = [
url(r'^sitemap\.xml$', 'sitemap.view', name='sitemap_xml'),
]
news_patterns = [
url(r'^$', 'news.views.index', name='index'),
url(_(r'^category/(?P<slug>[\w-]+)/$'), 'news.views.category', name='category'),
url(r'^(?P<slug>[\w-]+)/$', 'news.views.details', name='detail'),
]
urlpatterns += i18n_patterns(
url(_(r'^about/$'), 'about.view', name='about'),
url(_(r'^news/'), include(news_patterns, namespace='news')),
)
After you've created the translations, the
:func:`~django.core.urlresolvers.reverse` function will return the URL in the
active language. Example::
from django.core.urlresolvers import reverse
from django.utils.translation import activate
>>> activate('en')
>>> reverse('news:category', kwargs={'slug': 'recent'})
'/en/news/category/recent/'
>>> activate('nl')
>>> reverse('news:category', kwargs={'slug': 'recent'})
'/nl/nieuws/categorie/recent/'
.. warning::
In most cases, it's best to use translated URLs only within a
language-code-prefixed block of patterns (using
:func:`~django.conf.urls.i18n.i18n_patterns`), to avoid the possibility
that a carelessly translated URL causes a collision with a non-translated
URL pattern.
.. _reversing_in_templates:
Reversing in templates
----------------------
If localized URLs get reversed in templates they always use the current
language. To link to a URL in another language use the :ttag:`language`
template tag. It enables the given language in the enclosed template section:
.. code-block:: html+django
{% load i18n %}
{% get_available_languages as languages %}
{% trans "View this category in:" %}
{% for lang_code, lang_name in languages %}
{% language lang_code %}
<a href="{% url 'category' slug=category.slug %}">{{ lang_name }}</a>
{% endlanguage %}
{% endfor %}
The :ttag:`language` tag expects the language code as the only argument.
.. _how-to-create-language-files:
Localization: how to create language files
==========================================
Once the string literals of an application have been tagged for later
translation, the translation themselves need to be written (or obtained). Here's
how that works.
Message files
-------------
The first step is to create a :term:`message file` for a new language. A message
file is a plain-text file, representing a single language, that contains all
available translation strings and how they should be represented in the given
language. Message files have a ``.po`` file extension.
Django comes with a tool, :djadmin:`django-admin.py makemessages
<makemessages>`, that automates the creation and upkeep of these files.
.. admonition:: Gettext utilities
The ``makemessages`` command (and ``compilemessages`` discussed later) use
commands from the GNU gettext toolset: ``xgettext``, ``msgfmt``,
``msgmerge`` and ``msguniq``.
The minimum version of the ``gettext`` utilities supported is 0.15.
To create or update a message file, run this command::
django-admin.py makemessages -l de
...where ``de`` is the language code for the message file you want to create.
The language code, in this case, is in :term:`locale format<locale name>`. For
example, it's ``pt_BR`` for Brazilian Portuguese and ``de_AT`` for Austrian
German.
The script should be run from one of two places:
* The root directory of your Django project (the one that contains
``manage.py``).
* The root directory of one of your Django apps.
The script runs over your project source tree or your application source tree
and pulls out all strings marked for translation (see
:ref:`how-django-discovers-translations` and be sure :setting:`LOCALE_PATHS`
is configured correctly). It creates (or updates) a message file in the
directory ``locale/LANG/LC_MESSAGES``. In the ``de`` example, the file will be
``locale/de/LC_MESSAGES/django.po``.
.. versionchanged:: 1.7
When you run ``makemessages`` from the root directory of your project, the
extracted strings will be automatically distributed to the proper message
files. That is, a string extracted from a file of an app containing a
``locale`` directory will go in a message file under that directory.
A string extracted from a file of an app without any ``locale`` directory
will either go in a message file under the directory listed first in
:setting:`LOCALE_PATHS` or will generate an error if :setting:`LOCALE_PATHS`
is empty.
By default :djadmin:`django-admin.py makemessages <makemessages>` examines every
file that has the ``.html`` or ``.txt`` file extension. In case you want to
override that default, use the ``--extension`` or ``-e`` option to specify the
file extensions to examine::
django-admin.py makemessages -l de -e txt
Separate multiple extensions with commas and/or use ``-e`` or ``--extension``
multiple times::
django-admin.py makemessages -l de -e html,txt -e xml
.. warning::
When :ref:`creating message files from JavaScript source code
<creating-message-files-from-js-code>` you need to use the special
'djangojs' domain, **not** ``-e js``.
.. admonition:: No gettext?
If you don't have the ``gettext`` utilities installed,
:djadmin:`makemessages` will create empty files. If that's the case, either
install the ``gettext`` utilities or just copy the English message file
(``locale/en/LC_MESSAGES/django.po``) if available and use it as a starting
point; it's just an empty translation file.
.. admonition:: Working on Windows?
If you're using Windows and need to install the GNU gettext utilities so
:djadmin:`makemessages` works, see :ref:`gettext_on_windows` for more
information.
The format of ``.po`` files is straightforward. Each ``.po`` file contains a
small bit of metadata, such as the translation maintainer's contact
information, but the bulk of the file is a list of **messages** -- simple
mappings between translation strings and the actual translated text for the
particular language.
For example, if your Django app contained a translation string for the text
``"Welcome to my site."``, like so::
_("Welcome to my site.")
...then :djadmin:`django-admin.py makemessages <makemessages>` will have created
a ``.po`` file containing the following snippet -- a message::
#: path/to/python/module.py:23
msgid "Welcome to my site."
msgstr ""
A quick explanation:
* ``msgid`` is the translation string, which appears in the source. Don't
change it.
* ``msgstr`` is where you put the language-specific translation. It starts
out empty, so it's your responsibility to change it. Make sure you keep
the quotes around your translation.
* As a convenience, each message includes, in the form of a comment line
prefixed with ``#`` and located above the ``msgid`` line, the filename and
line number from which the translation string was gleaned.
Long messages are a special case. There, the first string directly after the
``msgstr`` (or ``msgid``) is an empty string. Then the content itself will be
written over the next few lines as one string per line. Those strings are
directly concatenated. Don't forget trailing spaces within the strings;
otherwise, they'll be tacked together without whitespace!
.. admonition:: Mind your charset
When creating a PO file with your favorite text editor, first edit
the charset line (search for ``"CHARSET"``) and set it to the charset
you'll be using to edit the content. Due to the way the ``gettext`` tools
work internally and because we want to allow non-ASCII source strings in
Django's core and your applications, you **must** use UTF-8 as the encoding
for your PO file. This means that everybody will be using the same
encoding, which is important when Django processes the PO files.
To reexamine all source code and templates for new translation strings and
update all message files for **all** languages, run this::
django-admin.py makemessages -a
Compiling message files
-----------------------
After you create your message file -- and each time you make changes to it --
you'll need to compile it into a more efficient form, for use by ``gettext``. Do
this with the :djadmin:`django-admin.py compilemessages <compilemessages>`
utility.
This tool runs over all available ``.po`` files and creates ``.mo`` files, which
are binary files optimized for use by ``gettext``. In the same directory from
which you ran :djadmin:`django-admin.py makemessages <makemessages>`, run :djadmin:`django-admin.py compilemessages <compilemessages>` like this::
django-admin.py compilemessages
That's it. Your translations are ready for use.
.. admonition:: Working on Windows?
If you're using Windows and need to install the GNU gettext utilities so
:djadmin:`django-admin.py compilemessages <compilemessages>` works see
:ref:`gettext_on_windows` for more information.
.. admonition:: .po files: Encoding and BOM usage.
Django only supports ``.po`` files encoded in UTF-8 and without any BOM
(Byte Order Mark) so if your text editor adds such marks to the beginning of
files by default then you will need to reconfigure it.
.. _creating-message-files-from-js-code:
Creating message files from JavaScript source code
--------------------------------------------------
You create and update the message files the same way as the other Django message
files -- with the :djadmin:`django-admin.py makemessages <makemessages>` tool.
The only difference is you need to explicitly specify what in gettext parlance
is known as a domain in this case the ``djangojs`` domain, by providing a ``-d
djangojs`` parameter, like this::
django-admin.py makemessages -d djangojs -l de
This would create or update the message file for JavaScript for German. After
updating message files, just run :djadmin:`django-admin.py compilemessages
<compilemessages>` the same way as you do with normal Django message files.
.. _gettext_on_windows:
``gettext`` on Windows
----------------------
This is only needed for people who either want to extract message IDs or compile
message files (``.po``). Translation work itself just involves editing existing
files of this type, but if you want to create your own message files, or want to
test or compile a changed message file, you will need the ``gettext`` utilities:
* Download the following zip files from the GNOME servers
http://ftp.gnome.org/pub/gnome/binaries/win32/dependencies/ or from one
of its mirrors_
* ``gettext-runtime-X.zip``
* ``gettext-tools-X.zip``
``X`` is the version number, we are requiring ``0.15`` or higher.
* Extract the contents of the ``bin\`` directories in both files to the
same folder on your system (i.e. ``C:\Program Files\gettext-utils``)
* Update the system PATH:
* ``Control Panel > System > Advanced > Environment Variables``.
* In the ``System variables`` list, click ``Path``, click ``Edit``.
* Add ``;C:\Program Files\gettext-utils\bin`` at the end of the
``Variable value`` field.
.. _mirrors: http://ftp.gnome.org/pub/GNOME/MIRRORS
You may also use ``gettext`` binaries you have obtained elsewhere, so long as
the ``xgettext --version`` command works properly. Do not attempt to use Django
translation utilities with a ``gettext`` package if the command ``xgettext
--version`` entered at a Windows command prompt causes a popup window saying
"xgettext.exe has generated errors and will be closed by Windows".
Miscellaneous
=============
.. _set_language-redirect-view:
The ``set_language`` redirect view
----------------------------------
.. highlightlang:: python
.. currentmodule:: django.views.i18n
.. function:: set_language(request)
As a convenience, Django comes with a view, :func:`django.views.i18n.set_language`,
that sets a user's language preference and redirects to a given URL or, by default,
back to the previous page.
Make sure that the following item is in your
:setting:`TEMPLATE_CONTEXT_PROCESSORS` list in your settings file::
'django.core.context_processors.i18n'
Activate this view by adding the following line to your URLconf::
(r'^i18n/', include('django.conf.urls.i18n')),
(Note that this example makes the view available at ``/i18n/setlang/``.)
.. warning::
Make sure that you don't include the above URL within
:func:`~django.conf.urls.i18n.i18n_patterns` - it needs to be
language-independent itself to work correctly.
The view expects to be called via the ``POST`` method, with a ``language``
parameter set in request. If session support is enabled, the view
saves the language choice in the user's session. Otherwise, it saves the
language choice in a cookie that is by default named ``django_language``.
(The name can be changed through the :setting:`LANGUAGE_COOKIE_NAME` setting.)
After setting the language choice, Django redirects the user, following this
algorithm:
* Django looks for a ``next`` parameter in the ``POST`` data.
* If that doesn't exist, or is empty, Django tries the URL in the
``Referrer`` header.
* If that's empty -- say, if a user's browser suppresses that header --
then the user will be redirected to ``/`` (the site root) as a fallback.
Here's example HTML template code:
.. code-block:: html+django
<form action="{% url 'set_language' %}" method="post">
{% csrf_token %}
<input name="next" type="hidden" value="{{ redirect_to }}" />
<select name="language">
{% get_language_info_list for LANGUAGES as languages %}
{% for language in languages %}
<option value="{{ language.code }}"{% if language.code == LANGUAGE_CODE %} selected="selected"{% endif %}>
{{ language.name_local }} ({{ language.code }})
</option>
{% endfor %}
</select>
<input type="submit" value="Go" />
</form>
In this example, Django looks up the URL of the page to which the user will be
redirected in the ``redirect_to`` context variable.
Explicitly setting the active language
--------------------------------------
.. highlightlang:: python
You may want to set the active language for the current session explicitly. Perhaps
a user's language preference is retrieved from another system, for example.
You've already been introduced to :func:`django.utils.translation.activate()`. That
applies to the current thread only. To persist the language for the entire
session, also modify :data:`~django.utils.translation.LANGUAGE_SESSION_KEY`
in the session::
from django.utils import translation
user_language = 'fr'
translation.activate(user_language)
request.session[translation.LANGUAGE_SESSION_KEY] = user_language
You would typically want to use both: :func:`django.utils.translation.activate()`
will change the language for this thread, and modifying the session makes this
preference persist in future requests.
If you are not using sessions, the language will persist in a cookie, whose name
is configured in :setting:`LANGUAGE_COOKIE_NAME`. For example::
from django.utils import translation
from django import http
from django.conf import settings
user_language = 'fr'
translation.activate(user_language)
response = http.HttpResponse(...)
response.set_cookie(settings.LANGUAGE_COOKIE_NAME, user_language)
Using translations outside views and templates
----------------------------------------------
While Django provides a rich set of i18n tools for use in views and templates,
it does not restrict the usage to Django-specific code. The Django translation
mechanisms can be used to translate arbitrary texts to any language that is
supported by Django (as long as an appropriate translation catalog exists, of
course). You can load a translation catalog, activate it and translate text to
language of your choice, but remember to switch back to original language, as
activating a translation catalog is done on per-thread basis and such change
will affect code running in the same thread.
For example::
from django.utils import translation
def welcome_translated(language):
cur_language = translation.get_language()
try:
translation.activate(language)
text = translation.ugettext('welcome')
finally:
translation.activate(cur_language)
return text
Calling this function with the value 'de' will give you ``"Willkommen"``,
regardless of :setting:`LANGUAGE_CODE` and language set by middleware.
Functions of particular interest are ``django.utils.translation.get_language()``
which returns the language used in the current thread,
``django.utils.translation.activate()`` which activates a translation catalog
for the current thread, and ``django.utils.translation.check_for_language()``
which checks if the given language is supported by Django.
Language cookie
---------------
A number of settings can be used to adjust language cookie options:
* :setting:`LANGUAGE_COOKIE_NAME`
.. versionadded:: 1.7
* :setting:`LANGUAGE_COOKIE_AGE`
* :setting:`LANGUAGE_COOKIE_DOMAIN`
* :setting:`LANGUAGE_COOKIE_PATH`
Implementation notes
====================
.. _specialties-of-django-i18n:
Specialties of Django translation
---------------------------------
Django's translation machinery uses the standard ``gettext`` module that comes
with Python. If you know ``gettext``, you might note these specialties in the
way Django does translation:
* The string domain is ``django`` or ``djangojs``. This string domain is
used to differentiate between different programs that store their data
in a common message-file library (usually ``/usr/share/locale/``). The
``django`` domain is used for python and template translation strings
and is loaded into the global translation catalogs. The ``djangojs``
domain is only used for JavaScript translation catalogs to make sure
that those are as small as possible.
* Django doesn't use ``xgettext`` alone. It uses Python wrappers around
``xgettext`` and ``msgfmt``. This is mostly for convenience.
.. _how-django-discovers-language-preference:
How Django discovers language preference
----------------------------------------
Once you've prepared your translations -- or, if you just want to use the
translations that come with Django -- you'll just need to activate translation
for your app.
Behind the scenes, Django has a very flexible model of deciding which language
should be used -- installation-wide, for a particular user, or both.
To set an installation-wide language preference, set :setting:`LANGUAGE_CODE`.
Django uses this language as the default translation -- the final attempt if no
better matching translation is found through one of the methods employed by the
locale middleware (see below).
If all you want is to run Django with your native language all you need to do
is set :setting:`LANGUAGE_CODE` and make sure the corresponding :term:`message
files <message file>` and their compiled versions (``.mo``) exist.
If you want to let each individual user specify which language they
prefer, then you also need to use the ``LocaleMiddleware``.
``LocaleMiddleware`` enables language selection based on data from the request.
It customizes content for each user.
To use ``LocaleMiddleware``, add ``'django.middleware.locale.LocaleMiddleware'``
to your :setting:`MIDDLEWARE_CLASSES` setting. Because middleware order
matters, you should follow these guidelines:
* Make sure it's one of the first middlewares installed.
* It should come after ``SessionMiddleware``, because ``LocaleMiddleware``
makes use of session data. And it should come before ``CommonMiddleware``
because ``CommonMiddleware`` needs an activated language in order
to resolve the requested URL.
* If you use ``CacheMiddleware``, put ``LocaleMiddleware`` after it.
For example, your :setting:`MIDDLEWARE_CLASSES` might look like this::
MIDDLEWARE_CLASSES = (
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.locale.LocaleMiddleware',
'django.middleware.common.CommonMiddleware',
)
(For more on middleware, see the :doc:`middleware documentation
</topics/http/middleware>`.)
``LocaleMiddleware`` tries to determine the user's language preference by
following this algorithm:
* First, it looks for the language prefix in the requested URL. This is
only performed when you are using the ``i18n_patterns`` function in your
root URLconf. See :ref:`url-internationalization` for more information
about the language prefix and how to internationalize URL patterns.
* Failing that, it looks for the :data:`~django.utils.translation.LANGUAGE_SESSION_KEY`
key in the current user's session.
.. versionchanged:: 1.7
In previous versions, the key was named ``django_language``, and the
``LANGUAGE_SESSION_KEY`` constant did not exist.
* Failing that, it looks for a cookie.
The name of the cookie used is set by the :setting:`LANGUAGE_COOKIE_NAME`
setting. (The default name is ``django_language``.)
* Failing that, it looks at the ``Accept-Language`` HTTP header. This
header is sent by your browser and tells the server which language(s) you
prefer, in order by priority. Django tries each language in the header
until it finds one with available translations.
* Failing that, it uses the global :setting:`LANGUAGE_CODE` setting.
.. _locale-middleware-notes:
Notes:
* In each of these places, the language preference is expected to be in the
standard :term:`language format<language code>`, as a string. For example,
Brazilian Portuguese is ``pt-br``.
* If a base language is available but the sublanguage specified is not,
Django uses the base language. For example, if a user specifies ``de-at``
(Austrian German) but Django only has ``de`` available, Django uses
``de``.
* Only languages listed in the :setting:`LANGUAGES` setting can be selected.
If you want to restrict the language selection to a subset of provided
languages (because your application doesn't provide all those languages),
set :setting:`LANGUAGES` to a list of languages. For example::
LANGUAGES = (
('de', _('German')),
('en', _('English')),
)
This example restricts languages that are available for automatic
selection to German and English (and any sublanguage, like de-ch or
en-us).
* If you define a custom :setting:`LANGUAGES` setting, as explained in the
previous bullet, you can mark the language names as translation strings
-- but use :func:`~django.utils.translation.ugettext_lazy` instead of
:func:`~django.utils.translation.ugettext` to avoid a circular import.
Here's a sample settings file::
from django.utils.translation import ugettext_lazy as _
LANGUAGES = (
('de', _('German')),
('en', _('English')),
)
Once ``LocaleMiddleware`` determines the user's preference, it makes this
preference available as ``request.LANGUAGE_CODE`` for each
:class:`~django.http.HttpRequest`. Feel free to read this value in your view
code. Here's a simple example::
from django.http import HttpResponse
def hello_world(request, count):
if request.LANGUAGE_CODE == 'de-at':
return HttpResponse("You prefer to read Austrian German.")
else:
return HttpResponse("You prefer to read another language.")
Note that, with static (middleware-less) translation, the language is in
``settings.LANGUAGE_CODE``, while with dynamic (middleware) translation, it's
in ``request.LANGUAGE_CODE``.
.. _settings file: ../settings/
.. _middleware documentation: ../middleware/
.. _session: ../sessions/
.. _request object: ../request_response/#httprequest-objects
.. _how-django-discovers-translations:
How Django discovers translations
---------------------------------
At runtime, Django builds an in-memory unified catalog of literals-translations.
To achieve this it looks for translations by following this algorithm regarding
the order in which it examines the different file paths to load the compiled
:term:`message files <message file>` (``.mo``) and the precedence of multiple
translations for the same literal:
1. The directories listed in :setting:`LOCALE_PATHS` have the highest
precedence, with the ones appearing first having higher precedence than
the ones appearing later.
2. Then, it looks for and uses if it exists a ``locale`` directory in each
of the installed apps listed in :setting:`INSTALLED_APPS`. The ones
appearing first have higher precedence than the ones appearing later.
3. Finally, the Django-provided base translation in ``django/conf/locale``
is used as a fallback.
.. seealso::
The translations for literals included in JavaScript assets are looked up
following a similar but not identical algorithm. See the
:ref:`javascript_catalog view documentation <javascript_catalog-view>` for
more details.
In all cases the name of the directory containing the translation is expected to
be named using :term:`locale name` notation. E.g. ``de``, ``pt_BR``, ``es_AR``,
etc.
This way, you can write applications that include their own translations, and
you can override base translations in your project. Or, you can just build
a big project out of several apps and put all translations into one big common
message file specific to the project you are composing. The choice is yours.
All message file repositories are structured the same way. They are:
* All paths listed in :setting:`LOCALE_PATHS` in your settings file are
searched for ``<language>/LC_MESSAGES/django.(po|mo)``
* ``$APPPATH/locale/<language>/LC_MESSAGES/django.(po|mo)``
* ``$PYTHONPATH/django/conf/locale/<language>/LC_MESSAGES/django.(po|mo)``
To create message files, you use the :djadmin:`django-admin.py makemessages <makemessages>`
tool. And you use :djadmin:`django-admin.py compilemessages <compilemessages>`
to produce the binary ``.mo`` files that are used by ``gettext``.
You can also run :djadmin:`django-admin.py compilemessages
--settings=path.to.settings <compilemessages>` to make the compiler process all
the directories in your :setting:`LOCALE_PATHS` setting.