mirror of
https://github.com/django/django.git
synced 2025-01-10 10:26:34 +00:00
1634 lines
62 KiB
Python
1634 lines
62 KiB
Python
import ctypes
|
||
import itertools
|
||
import json
|
||
import math
|
||
import pickle
|
||
import random
|
||
from binascii import a2b_hex
|
||
from io import BytesIO
|
||
from unittest import mock, skipIf
|
||
|
||
from django.contrib.gis import gdal
|
||
from django.contrib.gis.geos import (
|
||
GeometryCollection,
|
||
GEOSException,
|
||
GEOSGeometry,
|
||
LinearRing,
|
||
LineString,
|
||
MultiLineString,
|
||
MultiPoint,
|
||
MultiPolygon,
|
||
Point,
|
||
Polygon,
|
||
fromfile,
|
||
fromstr,
|
||
)
|
||
from django.contrib.gis.geos.libgeos import geos_version_tuple
|
||
from django.contrib.gis.shortcuts import numpy
|
||
from django.template import Context
|
||
from django.template.engine import Engine
|
||
from django.test import SimpleTestCase
|
||
|
||
from ..test_data import TestDataMixin
|
||
|
||
|
||
class GEOSTest(SimpleTestCase, TestDataMixin):
|
||
def test_wkt(self):
|
||
"Testing WKT output."
|
||
for g in self.geometries.wkt_out:
|
||
geom = fromstr(g.wkt)
|
||
if geom.hasz:
|
||
self.assertEqual(g.ewkt, geom.wkt)
|
||
|
||
def test_wkt_invalid(self):
|
||
msg = "String input unrecognized as WKT EWKT, and HEXEWKB."
|
||
with self.assertRaisesMessage(ValueError, msg):
|
||
fromstr("POINT(٠٠١ ٠)")
|
||
with self.assertRaisesMessage(ValueError, msg):
|
||
fromstr("SRID=٧٥٨٣;POINT(100 0)")
|
||
|
||
def test_hex(self):
|
||
"Testing HEX output."
|
||
for g in self.geometries.hex_wkt:
|
||
geom = fromstr(g.wkt)
|
||
self.assertEqual(g.hex, geom.hex.decode())
|
||
|
||
def test_hexewkb(self):
|
||
"Testing (HEX)EWKB output."
|
||
# For testing HEX(EWKB).
|
||
ogc_hex = b"01010000000000000000000000000000000000F03F"
|
||
ogc_hex_3d = b"01010000800000000000000000000000000000F03F0000000000000040"
|
||
# `SELECT ST_AsHEXEWKB(ST_GeomFromText('POINT(0 1)', 4326));`
|
||
hexewkb_2d = b"0101000020E61000000000000000000000000000000000F03F"
|
||
# `SELECT ST_AsHEXEWKB(ST_GeomFromEWKT('SRID=4326;POINT(0 1 2)'));`
|
||
hexewkb_3d = (
|
||
b"01010000A0E61000000000000000000000000000000000F03F0000000000000040"
|
||
)
|
||
|
||
pnt_2d = Point(0, 1, srid=4326)
|
||
pnt_3d = Point(0, 1, 2, srid=4326)
|
||
|
||
# OGC-compliant HEX will not have SRID value.
|
||
self.assertEqual(ogc_hex, pnt_2d.hex)
|
||
self.assertEqual(ogc_hex_3d, pnt_3d.hex)
|
||
|
||
# HEXEWKB should be appropriate for its dimension -- have to use an
|
||
# a WKBWriter w/dimension set accordingly, else GEOS will insert
|
||
# garbage into 3D coordinate if there is none.
|
||
self.assertEqual(hexewkb_2d, pnt_2d.hexewkb)
|
||
self.assertEqual(hexewkb_3d, pnt_3d.hexewkb)
|
||
self.assertIs(GEOSGeometry(hexewkb_3d).hasz, True)
|
||
|
||
# Same for EWKB.
|
||
self.assertEqual(memoryview(a2b_hex(hexewkb_2d)), pnt_2d.ewkb)
|
||
self.assertEqual(memoryview(a2b_hex(hexewkb_3d)), pnt_3d.ewkb)
|
||
|
||
# Redundant sanity check.
|
||
self.assertEqual(4326, GEOSGeometry(hexewkb_2d).srid)
|
||
|
||
def test_kml(self):
|
||
"Testing KML output."
|
||
for tg in self.geometries.wkt_out:
|
||
geom = fromstr(tg.wkt)
|
||
kml = getattr(tg, "kml", False)
|
||
if kml:
|
||
self.assertEqual(kml, geom.kml)
|
||
|
||
def test_errors(self):
|
||
"Testing the Error handlers."
|
||
# string-based
|
||
for err in self.geometries.errors:
|
||
with self.assertRaises((GEOSException, ValueError)):
|
||
fromstr(err.wkt)
|
||
|
||
# Bad WKB
|
||
with self.assertRaises(GEOSException):
|
||
GEOSGeometry(memoryview(b"0"))
|
||
|
||
class NotAGeometry:
|
||
pass
|
||
|
||
# Some other object
|
||
with self.assertRaises(TypeError):
|
||
GEOSGeometry(NotAGeometry())
|
||
# None
|
||
with self.assertRaises(TypeError):
|
||
GEOSGeometry(None)
|
||
|
||
def test_wkb(self):
|
||
"Testing WKB output."
|
||
for g in self.geometries.hex_wkt:
|
||
geom = fromstr(g.wkt)
|
||
wkb = geom.wkb
|
||
self.assertEqual(wkb.hex().upper(), g.hex)
|
||
|
||
def test_create_hex(self):
|
||
"Testing creation from HEX."
|
||
for g in self.geometries.hex_wkt:
|
||
geom_h = GEOSGeometry(g.hex)
|
||
# we need to do this so decimal places get normalized
|
||
geom_t = fromstr(g.wkt)
|
||
self.assertEqual(geom_t.wkt, geom_h.wkt)
|
||
|
||
def test_create_wkb(self):
|
||
"Testing creation from WKB."
|
||
for g in self.geometries.hex_wkt:
|
||
wkb = memoryview(bytes.fromhex(g.hex))
|
||
geom_h = GEOSGeometry(wkb)
|
||
# we need to do this so decimal places get normalized
|
||
geom_t = fromstr(g.wkt)
|
||
self.assertEqual(geom_t.wkt, geom_h.wkt)
|
||
|
||
def test_ewkt(self):
|
||
"Testing EWKT."
|
||
srids = (-1, 32140)
|
||
for srid in srids:
|
||
for p in self.geometries.polygons:
|
||
ewkt = "SRID=%d;%s" % (srid, p.wkt)
|
||
poly = fromstr(ewkt)
|
||
self.assertEqual(srid, poly.srid)
|
||
self.assertEqual(srid, poly.shell.srid)
|
||
self.assertEqual(srid, fromstr(poly.ewkt).srid) # Checking export
|
||
|
||
def test_json(self):
|
||
"Testing GeoJSON input/output (via GDAL)."
|
||
for g in self.geometries.json_geoms:
|
||
geom = GEOSGeometry(g.wkt)
|
||
if not hasattr(g, "not_equal"):
|
||
# Loading jsons to prevent decimal differences
|
||
self.assertEqual(json.loads(g.json), json.loads(geom.json))
|
||
self.assertEqual(json.loads(g.json), json.loads(geom.geojson))
|
||
self.assertEqual(GEOSGeometry(g.wkt, 4326), GEOSGeometry(geom.json))
|
||
|
||
def test_json_srid(self):
|
||
geojson_data = {
|
||
"type": "Point",
|
||
"coordinates": [2, 49],
|
||
"crs": {
|
||
"type": "name",
|
||
"properties": {"name": "urn:ogc:def:crs:EPSG::4322"},
|
||
},
|
||
}
|
||
self.assertEqual(
|
||
GEOSGeometry(json.dumps(geojson_data)), Point(2, 49, srid=4322)
|
||
)
|
||
|
||
def test_fromfile(self):
|
||
"Testing the fromfile() factory."
|
||
ref_pnt = GEOSGeometry("POINT(5 23)")
|
||
|
||
wkt_f = BytesIO()
|
||
wkt_f.write(ref_pnt.wkt.encode())
|
||
wkb_f = BytesIO()
|
||
wkb_f.write(bytes(ref_pnt.wkb))
|
||
|
||
# Other tests use `fromfile()` on string filenames so those
|
||
# aren't tested here.
|
||
for fh in (wkt_f, wkb_f):
|
||
fh.seek(0)
|
||
pnt = fromfile(fh)
|
||
self.assertEqual(ref_pnt, pnt)
|
||
|
||
def test_eq(self):
|
||
"Testing equivalence."
|
||
p = fromstr("POINT(5 23)")
|
||
self.assertEqual(p, p.wkt)
|
||
self.assertNotEqual(p, "foo")
|
||
ls = fromstr("LINESTRING(0 0, 1 1, 5 5)")
|
||
self.assertEqual(ls, ls.wkt)
|
||
self.assertNotEqual(p, "bar")
|
||
self.assertEqual(p, "POINT(5.0 23.0)")
|
||
# Error shouldn't be raise on equivalence testing with
|
||
# an invalid type.
|
||
for g in (p, ls):
|
||
self.assertIsNotNone(g)
|
||
self.assertNotEqual(g, {"foo": "bar"})
|
||
self.assertIsNot(g, False)
|
||
|
||
def test_hash(self):
|
||
point_1 = Point(5, 23)
|
||
point_2 = Point(5, 23, srid=4326)
|
||
point_3 = Point(5, 23, srid=32632)
|
||
multipoint_1 = MultiPoint(point_1, srid=4326)
|
||
multipoint_2 = MultiPoint(point_2)
|
||
multipoint_3 = MultiPoint(point_3)
|
||
self.assertNotEqual(hash(point_1), hash(point_2))
|
||
self.assertNotEqual(hash(point_1), hash(point_3))
|
||
self.assertNotEqual(hash(point_2), hash(point_3))
|
||
self.assertNotEqual(hash(multipoint_1), hash(multipoint_2))
|
||
self.assertEqual(hash(multipoint_2), hash(multipoint_3))
|
||
self.assertNotEqual(hash(multipoint_1), hash(point_1))
|
||
self.assertNotEqual(hash(multipoint_2), hash(point_2))
|
||
self.assertNotEqual(hash(multipoint_3), hash(point_3))
|
||
|
||
def test_eq_with_srid(self):
|
||
"Testing non-equivalence with different srids."
|
||
p0 = Point(5, 23)
|
||
p1 = Point(5, 23, srid=4326)
|
||
p2 = Point(5, 23, srid=32632)
|
||
# GEOS
|
||
self.assertNotEqual(p0, p1)
|
||
self.assertNotEqual(p1, p2)
|
||
# EWKT
|
||
self.assertNotEqual(p0, p1.ewkt)
|
||
self.assertNotEqual(p1, p0.ewkt)
|
||
self.assertNotEqual(p1, p2.ewkt)
|
||
# Equivalence with matching SRIDs
|
||
self.assertEqual(p2, p2)
|
||
self.assertEqual(p2, p2.ewkt)
|
||
# WKT contains no SRID so will not equal
|
||
self.assertNotEqual(p2, p2.wkt)
|
||
# SRID of 0
|
||
self.assertEqual(p0, "SRID=0;POINT (5 23)")
|
||
self.assertNotEqual(p1, "SRID=0;POINT (5 23)")
|
||
|
||
@skipIf(geos_version_tuple() < (3, 12), "GEOS >= 3.12.0 is required")
|
||
def test_equals_identical(self):
|
||
tests = [
|
||
# Empty inputs of different types are not equals_identical.
|
||
("POINT EMPTY", "LINESTRING EMPTY", False),
|
||
# Empty inputs of different dimensions are not equals_identical.
|
||
("POINT EMPTY", "POINT Z EMPTY", False),
|
||
# Non-empty inputs of different dimensions are not equals_identical.
|
||
("POINT Z (1 2 3)", "POINT M (1 2 3)", False),
|
||
("POINT ZM (1 2 3 4)", "POINT Z (1 2 3)", False),
|
||
# Inputs with different structure are not equals_identical.
|
||
("LINESTRING (1 1, 2 2)", "MULTILINESTRING ((1 1, 2 2))", False),
|
||
# Inputs with different types are not equals_identical.
|
||
(
|
||
"GEOMETRYCOLLECTION (LINESTRING (1 1, 2 2))",
|
||
"MULTILINESTRING ((1 1, 2 2))",
|
||
False,
|
||
),
|
||
# Same lines are equals_identical.
|
||
("LINESTRING M (1 1 0, 2 2 1)", "LINESTRING M (1 1 0, 2 2 1)", True),
|
||
# Different lines are not equals_identical.
|
||
("LINESTRING M (1 1 0, 2 2 1)", "LINESTRING M (1 1 1, 2 2 1)", False),
|
||
# Same polygons are equals_identical.
|
||
("POLYGON ((0 0, 1 0, 1 1, 0 0))", "POLYGON ((0 0, 1 0, 1 1, 0 0))", True),
|
||
# Different polygons are not equals_identical.
|
||
("POLYGON ((0 0, 1 0, 1 1, 0 0))", "POLYGON ((1 0, 1 1, 0 0, 1 0))", False),
|
||
# Different polygons (number of holes) are not equals_identical.
|
||
(
|
||
"POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0), (1 1, 2 1, 2 2, 1 1))",
|
||
(
|
||
"POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0), (1 1, 2 1, 2 2, 1 1), "
|
||
"(3 3, 4 3, 4 4, 3 3))"
|
||
),
|
||
False,
|
||
),
|
||
# Same collections are equals_identical.
|
||
(
|
||
"MULTILINESTRING ((1 1, 2 2), (2 2, 3 3))",
|
||
"MULTILINESTRING ((1 1, 2 2), (2 2, 3 3))",
|
||
True,
|
||
),
|
||
# Different collections (structure) are not equals_identical.
|
||
(
|
||
"MULTILINESTRING ((1 1, 2 2), (2 2, 3 3))",
|
||
"MULTILINESTRING ((2 2, 3 3), (1 1, 2 2))",
|
||
False,
|
||
),
|
||
]
|
||
for g1, g2, is_equal_identical in tests:
|
||
with self.subTest(g1=g1, g2=g2):
|
||
self.assertIs(
|
||
fromstr(g1).equals_identical(fromstr(g2)), is_equal_identical
|
||
)
|
||
|
||
@skipIf(geos_version_tuple() < (3, 12), "GEOS >= 3.12.0 is required")
|
||
def test_infinite_values_equals_identical(self):
|
||
# Input with identical infinite values are equals_identical.
|
||
g1 = Point(x=float("nan"), y=math.inf)
|
||
g2 = Point(x=float("nan"), y=math.inf)
|
||
self.assertIs(g1.equals_identical(g2), True)
|
||
|
||
@mock.patch("django.contrib.gis.geos.libgeos.geos_version", lambda: b"3.11.0")
|
||
def test_equals_identical_geos_version(self):
|
||
g1 = fromstr("POINT (1 2 3)")
|
||
g2 = fromstr("POINT (1 2 3)")
|
||
msg = "GEOSGeometry.equals_identical() requires GEOS >= 3.12.0"
|
||
with self.assertRaisesMessage(GEOSException, msg):
|
||
g1.equals_identical(g2)
|
||
|
||
def test_points(self):
|
||
"Testing Point objects."
|
||
prev = fromstr("POINT(0 0)")
|
||
for p in self.geometries.points:
|
||
# Creating the point from the WKT
|
||
pnt = fromstr(p.wkt)
|
||
self.assertEqual(pnt.geom_type, "Point")
|
||
self.assertEqual(pnt.geom_typeid, 0)
|
||
self.assertEqual(pnt.dims, 0)
|
||
self.assertEqual(p.x, pnt.x)
|
||
self.assertEqual(p.y, pnt.y)
|
||
self.assertEqual(pnt, fromstr(p.wkt))
|
||
self.assertIs(pnt == prev, False) # Use assertIs() to test __eq__.
|
||
|
||
# Making sure that the point's X, Y components are what we expect
|
||
self.assertAlmostEqual(p.x, pnt.tuple[0], 9)
|
||
self.assertAlmostEqual(p.y, pnt.tuple[1], 9)
|
||
|
||
# Testing the third dimension, and getting the tuple arguments
|
||
if hasattr(p, "z"):
|
||
self.assertIs(pnt.hasz, True)
|
||
self.assertEqual(p.z, pnt.z)
|
||
self.assertEqual(p.z, pnt.tuple[2], 9)
|
||
tup_args = (p.x, p.y, p.z)
|
||
set_tup1 = (2.71, 3.14, 5.23)
|
||
set_tup2 = (5.23, 2.71, 3.14)
|
||
else:
|
||
self.assertIs(pnt.hasz, False)
|
||
self.assertIsNone(pnt.z)
|
||
tup_args = (p.x, p.y)
|
||
set_tup1 = (2.71, 3.14)
|
||
set_tup2 = (3.14, 2.71)
|
||
|
||
# Centroid operation on point should be point itself
|
||
self.assertEqual(p.centroid, pnt.centroid.tuple)
|
||
|
||
# Now testing the different constructors
|
||
pnt2 = Point(tup_args) # e.g., Point((1, 2))
|
||
pnt3 = Point(*tup_args) # e.g., Point(1, 2)
|
||
self.assertEqual(pnt, pnt2)
|
||
self.assertEqual(pnt, pnt3)
|
||
|
||
# Now testing setting the x and y
|
||
pnt.y = 3.14
|
||
pnt.x = 2.71
|
||
self.assertEqual(3.14, pnt.y)
|
||
self.assertEqual(2.71, pnt.x)
|
||
|
||
# Setting via the tuple/coords property
|
||
pnt.tuple = set_tup1
|
||
self.assertEqual(set_tup1, pnt.tuple)
|
||
pnt.coords = set_tup2
|
||
self.assertEqual(set_tup2, pnt.coords)
|
||
|
||
prev = pnt # setting the previous geometry
|
||
|
||
def test_point_reverse(self):
|
||
point = GEOSGeometry("POINT(144.963 -37.8143)", 4326)
|
||
self.assertEqual(point.srid, 4326)
|
||
point.reverse()
|
||
self.assertEqual(point.ewkt, "SRID=4326;POINT (-37.8143 144.963)")
|
||
|
||
def test_multipoints(self):
|
||
"Testing MultiPoint objects."
|
||
for mp in self.geometries.multipoints:
|
||
mpnt = fromstr(mp.wkt)
|
||
self.assertEqual(mpnt.geom_type, "MultiPoint")
|
||
self.assertEqual(mpnt.geom_typeid, 4)
|
||
self.assertEqual(mpnt.dims, 0)
|
||
|
||
self.assertAlmostEqual(mp.centroid[0], mpnt.centroid.tuple[0], 9)
|
||
self.assertAlmostEqual(mp.centroid[1], mpnt.centroid.tuple[1], 9)
|
||
|
||
with self.assertRaises(IndexError):
|
||
mpnt.__getitem__(len(mpnt))
|
||
self.assertEqual(mp.centroid, mpnt.centroid.tuple)
|
||
self.assertEqual(mp.coords, tuple(m.tuple for m in mpnt))
|
||
for p in mpnt:
|
||
self.assertEqual(p.geom_type, "Point")
|
||
self.assertEqual(p.geom_typeid, 0)
|
||
self.assertIs(p.empty, False)
|
||
self.assertIs(p.valid, True)
|
||
|
||
def test_linestring(self):
|
||
"Testing LineString objects."
|
||
prev = fromstr("POINT(0 0)")
|
||
for line in self.geometries.linestrings:
|
||
ls = fromstr(line.wkt)
|
||
self.assertEqual(ls.geom_type, "LineString")
|
||
self.assertEqual(ls.geom_typeid, 1)
|
||
self.assertEqual(ls.dims, 1)
|
||
self.assertIs(ls.empty, False)
|
||
self.assertIs(ls.ring, False)
|
||
if hasattr(line, "centroid"):
|
||
self.assertEqual(line.centroid, ls.centroid.tuple)
|
||
if hasattr(line, "tup"):
|
||
self.assertEqual(line.tup, ls.tuple)
|
||
|
||
self.assertEqual(ls, fromstr(line.wkt))
|
||
self.assertIs(ls == prev, False) # Use assertIs() to test __eq__.
|
||
with self.assertRaises(IndexError):
|
||
ls.__getitem__(len(ls))
|
||
prev = ls
|
||
|
||
# Creating a LineString from a tuple, list, and numpy array
|
||
self.assertEqual(ls, LineString(ls.tuple)) # tuple
|
||
self.assertEqual(ls, LineString(*ls.tuple)) # as individual arguments
|
||
self.assertEqual(ls, LineString([list(tup) for tup in ls.tuple])) # as list
|
||
# Point individual arguments
|
||
self.assertEqual(
|
||
ls.wkt, LineString(*tuple(Point(tup) for tup in ls.tuple)).wkt
|
||
)
|
||
if numpy:
|
||
self.assertEqual(
|
||
ls, LineString(numpy.array(ls.tuple))
|
||
) # as numpy array
|
||
|
||
with self.assertRaisesMessage(
|
||
TypeError, "Each coordinate should be a sequence (list or tuple)"
|
||
):
|
||
LineString((0, 0))
|
||
|
||
with self.assertRaisesMessage(
|
||
ValueError, "LineString requires at least 2 points, got 1."
|
||
):
|
||
LineString([(0, 0)])
|
||
|
||
if numpy:
|
||
with self.assertRaisesMessage(
|
||
ValueError, "LineString requires at least 2 points, got 1."
|
||
):
|
||
LineString(numpy.array([(0, 0)]))
|
||
|
||
with mock.patch("django.contrib.gis.geos.linestring.numpy", False):
|
||
with self.assertRaisesMessage(
|
||
TypeError, "Invalid initialization input for LineStrings."
|
||
):
|
||
LineString("wrong input")
|
||
|
||
# Test __iter__().
|
||
self.assertEqual(
|
||
list(LineString((0, 0), (1, 1), (2, 2))), [(0, 0), (1, 1), (2, 2)]
|
||
)
|
||
|
||
def test_linestring_reverse(self):
|
||
line = GEOSGeometry("LINESTRING(144.963 -37.8143,151.2607 -33.887)", 4326)
|
||
self.assertEqual(line.srid, 4326)
|
||
line.reverse()
|
||
self.assertEqual(
|
||
line.ewkt, "SRID=4326;LINESTRING (151.2607 -33.887, 144.963 -37.8143)"
|
||
)
|
||
|
||
def test_is_counterclockwise(self):
|
||
lr = LinearRing((0, 0), (1, 0), (0, 1), (0, 0))
|
||
self.assertIs(lr.is_counterclockwise, True)
|
||
lr.reverse()
|
||
self.assertIs(lr.is_counterclockwise, False)
|
||
msg = "Orientation of an empty LinearRing cannot be determined."
|
||
with self.assertRaisesMessage(ValueError, msg):
|
||
LinearRing().is_counterclockwise
|
||
|
||
def test_is_counterclockwise_geos_error(self):
|
||
with mock.patch("django.contrib.gis.geos.prototypes.cs_is_ccw") as mocked:
|
||
mocked.return_value = 0
|
||
mocked.func_name = "GEOSCoordSeq_isCCW"
|
||
msg = 'Error encountered in GEOS C function "GEOSCoordSeq_isCCW".'
|
||
with self.assertRaisesMessage(GEOSException, msg):
|
||
LinearRing((0, 0), (1, 0), (0, 1), (0, 0)).is_counterclockwise
|
||
|
||
def test_multilinestring(self):
|
||
"Testing MultiLineString objects."
|
||
prev = fromstr("POINT(0 0)")
|
||
for line in self.geometries.multilinestrings:
|
||
ml = fromstr(line.wkt)
|
||
self.assertEqual(ml.geom_type, "MultiLineString")
|
||
self.assertEqual(ml.geom_typeid, 5)
|
||
self.assertEqual(ml.dims, 1)
|
||
|
||
self.assertAlmostEqual(line.centroid[0], ml.centroid.x, 9)
|
||
self.assertAlmostEqual(line.centroid[1], ml.centroid.y, 9)
|
||
|
||
self.assertEqual(ml, fromstr(line.wkt))
|
||
self.assertIs(ml == prev, False) # Use assertIs() to test __eq__.
|
||
prev = ml
|
||
|
||
for ls in ml:
|
||
self.assertEqual(ls.geom_type, "LineString")
|
||
self.assertEqual(ls.geom_typeid, 1)
|
||
self.assertIs(ls.empty, False)
|
||
|
||
with self.assertRaises(IndexError):
|
||
ml.__getitem__(len(ml))
|
||
self.assertEqual(ml.wkt, MultiLineString(*tuple(s.clone() for s in ml)).wkt)
|
||
self.assertEqual(
|
||
ml, MultiLineString(*tuple(LineString(s.tuple) for s in ml))
|
||
)
|
||
|
||
def test_linearring(self):
|
||
"Testing LinearRing objects."
|
||
for rr in self.geometries.linearrings:
|
||
lr = fromstr(rr.wkt)
|
||
self.assertEqual(lr.geom_type, "LinearRing")
|
||
self.assertEqual(lr.geom_typeid, 2)
|
||
self.assertEqual(lr.dims, 1)
|
||
self.assertEqual(rr.n_p, len(lr))
|
||
self.assertIs(lr.valid, True)
|
||
self.assertIs(lr.empty, False)
|
||
|
||
# Creating a LinearRing from a tuple, list, and numpy array
|
||
self.assertEqual(lr, LinearRing(lr.tuple))
|
||
self.assertEqual(lr, LinearRing(*lr.tuple))
|
||
self.assertEqual(lr, LinearRing([list(tup) for tup in lr.tuple]))
|
||
if numpy:
|
||
self.assertEqual(lr, LinearRing(numpy.array(lr.tuple)))
|
||
|
||
with self.assertRaisesMessage(
|
||
ValueError, "LinearRing requires at least 4 points, got 3."
|
||
):
|
||
LinearRing((0, 0), (1, 1), (0, 0))
|
||
|
||
with self.assertRaisesMessage(
|
||
ValueError, "LinearRing requires at least 4 points, got 1."
|
||
):
|
||
LinearRing([(0, 0)])
|
||
|
||
if numpy:
|
||
with self.assertRaisesMessage(
|
||
ValueError, "LinearRing requires at least 4 points, got 1."
|
||
):
|
||
LinearRing(numpy.array([(0, 0)]))
|
||
|
||
def test_linearring_json(self):
|
||
self.assertJSONEqual(
|
||
LinearRing((0, 0), (0, 1), (1, 1), (0, 0)).json,
|
||
'{"coordinates": [[0, 0], [0, 1], [1, 1], [0, 0]], "type": "LineString"}',
|
||
)
|
||
|
||
def test_polygons_from_bbox(self):
|
||
"Testing `from_bbox` class method."
|
||
bbox = (-180, -90, 180, 90)
|
||
p = Polygon.from_bbox(bbox)
|
||
self.assertEqual(bbox, p.extent)
|
||
|
||
# Testing numerical precision
|
||
x = 3.14159265358979323
|
||
bbox = (0, 0, 1, x)
|
||
p = Polygon.from_bbox(bbox)
|
||
y = p.extent[-1]
|
||
self.assertEqual(format(x, ".13f"), format(y, ".13f"))
|
||
|
||
def test_polygons(self):
|
||
"Testing Polygon objects."
|
||
|
||
prev = fromstr("POINT(0 0)")
|
||
for p in self.geometries.polygons:
|
||
# Creating the Polygon, testing its properties.
|
||
poly = fromstr(p.wkt)
|
||
self.assertEqual(poly.geom_type, "Polygon")
|
||
self.assertEqual(poly.geom_typeid, 3)
|
||
self.assertEqual(poly.dims, 2)
|
||
self.assertIs(poly.empty, False)
|
||
self.assertIs(poly.ring, False)
|
||
self.assertEqual(p.n_i, poly.num_interior_rings)
|
||
self.assertEqual(p.n_i + 1, len(poly)) # Testing __len__
|
||
self.assertEqual(p.n_p, poly.num_points)
|
||
|
||
# Area & Centroid
|
||
self.assertAlmostEqual(p.area, poly.area, 9)
|
||
self.assertAlmostEqual(p.centroid[0], poly.centroid.tuple[0], 9)
|
||
self.assertAlmostEqual(p.centroid[1], poly.centroid.tuple[1], 9)
|
||
|
||
# Testing the geometry equivalence
|
||
self.assertEqual(poly, fromstr(p.wkt))
|
||
# Should not be equal to previous geometry
|
||
self.assertIs(poly == prev, False) # Use assertIs() to test __eq__.
|
||
self.assertIs(poly != prev, True) # Use assertIs() to test __ne__.
|
||
|
||
# Testing the exterior ring
|
||
ring = poly.exterior_ring
|
||
self.assertEqual(ring.geom_type, "LinearRing")
|
||
self.assertEqual(ring.geom_typeid, 2)
|
||
if p.ext_ring_cs:
|
||
self.assertEqual(p.ext_ring_cs, ring.tuple)
|
||
self.assertEqual(p.ext_ring_cs, poly[0].tuple) # Testing __getitem__
|
||
|
||
# Testing __getitem__ and __setitem__ on invalid indices
|
||
with self.assertRaises(IndexError):
|
||
poly.__getitem__(len(poly))
|
||
with self.assertRaises(IndexError):
|
||
poly.__setitem__(len(poly), False)
|
||
with self.assertRaises(IndexError):
|
||
poly.__getitem__(-1 * len(poly) - 1)
|
||
|
||
# Testing __iter__
|
||
for r in poly:
|
||
self.assertEqual(r.geom_type, "LinearRing")
|
||
self.assertEqual(r.geom_typeid, 2)
|
||
|
||
# Testing polygon construction.
|
||
with self.assertRaises(TypeError):
|
||
Polygon(0, [1, 2, 3])
|
||
with self.assertRaises(TypeError):
|
||
Polygon("foo")
|
||
|
||
# Polygon(shell, (hole1, ... holeN))
|
||
ext_ring, *int_rings = poly
|
||
self.assertEqual(poly, Polygon(ext_ring, int_rings))
|
||
|
||
# Polygon(shell_tuple, hole_tuple1, ... , hole_tupleN)
|
||
ring_tuples = tuple(r.tuple for r in poly)
|
||
self.assertEqual(poly, Polygon(*ring_tuples))
|
||
|
||
# Constructing with tuples of LinearRings.
|
||
self.assertEqual(poly.wkt, Polygon(*tuple(r for r in poly)).wkt)
|
||
self.assertEqual(
|
||
poly.wkt, Polygon(*tuple(LinearRing(r.tuple) for r in poly)).wkt
|
||
)
|
||
|
||
def test_polygons_templates(self):
|
||
# Accessing Polygon attributes in templates should work.
|
||
engine = Engine()
|
||
template = engine.from_string("{{ polygons.0.wkt }}")
|
||
polygons = [fromstr(p.wkt) for p in self.geometries.multipolygons[:2]]
|
||
content = template.render(Context({"polygons": polygons}))
|
||
self.assertIn("MULTIPOLYGON (((100", content)
|
||
|
||
def test_polygon_comparison(self):
|
||
p1 = Polygon(((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
|
||
p2 = Polygon(((0, 0), (0, 1), (1, 0), (0, 0)))
|
||
self.assertGreater(p1, p2)
|
||
self.assertLess(p2, p1)
|
||
|
||
p3 = Polygon(((0, 0), (0, 1), (1, 1), (2, 0), (0, 0)))
|
||
p4 = Polygon(((0, 0), (0, 1), (2, 2), (1, 0), (0, 0)))
|
||
self.assertGreater(p4, p3)
|
||
self.assertLess(p3, p4)
|
||
|
||
def test_multipolygons(self):
|
||
"Testing MultiPolygon objects."
|
||
fromstr("POINT (0 0)")
|
||
for mp in self.geometries.multipolygons:
|
||
mpoly = fromstr(mp.wkt)
|
||
self.assertEqual(mpoly.geom_type, "MultiPolygon")
|
||
self.assertEqual(mpoly.geom_typeid, 6)
|
||
self.assertEqual(mpoly.dims, 2)
|
||
self.assertEqual(mp.valid, mpoly.valid)
|
||
|
||
if mp.valid:
|
||
self.assertEqual(mp.num_geom, mpoly.num_geom)
|
||
self.assertEqual(mp.n_p, mpoly.num_coords)
|
||
self.assertEqual(mp.num_geom, len(mpoly))
|
||
with self.assertRaises(IndexError):
|
||
mpoly.__getitem__(len(mpoly))
|
||
for p in mpoly:
|
||
self.assertEqual(p.geom_type, "Polygon")
|
||
self.assertEqual(p.geom_typeid, 3)
|
||
self.assertIs(p.valid, True)
|
||
self.assertEqual(
|
||
mpoly.wkt, MultiPolygon(*tuple(poly.clone() for poly in mpoly)).wkt
|
||
)
|
||
|
||
def test_memory_hijinks(self):
|
||
"Testing Geometry __del__() on rings and polygons."
|
||
# #### Memory issues with rings and poly
|
||
|
||
# These tests are needed to ensure sanity with writable geometries.
|
||
|
||
# Getting a polygon with interior rings, and pulling out the interior rings
|
||
poly = fromstr(self.geometries.polygons[1].wkt)
|
||
ring1 = poly[0]
|
||
ring2 = poly[1]
|
||
|
||
# These deletes should be 'harmless' since they are done on child geometries
|
||
del ring1
|
||
del ring2
|
||
ring1 = poly[0]
|
||
ring2 = poly[1]
|
||
|
||
# Deleting the polygon
|
||
del poly
|
||
|
||
# Access to these rings is OK since they are clones.
|
||
str(ring1)
|
||
str(ring2)
|
||
|
||
def test_coord_seq(self):
|
||
"Testing Coordinate Sequence objects."
|
||
for p in self.geometries.polygons:
|
||
if p.ext_ring_cs:
|
||
# Constructing the polygon and getting the coordinate sequence
|
||
poly = fromstr(p.wkt)
|
||
cs = poly.exterior_ring.coord_seq
|
||
|
||
self.assertEqual(
|
||
p.ext_ring_cs, cs.tuple
|
||
) # done in the Polygon test too.
|
||
self.assertEqual(
|
||
len(p.ext_ring_cs), len(cs)
|
||
) # Making sure __len__ works
|
||
|
||
# Checks __getitem__ and __setitem__
|
||
for i in range(len(p.ext_ring_cs)):
|
||
c1 = p.ext_ring_cs[i] # Expected value
|
||
c2 = cs[i] # Value from coordseq
|
||
self.assertEqual(c1, c2)
|
||
|
||
# Constructing the test value to set the coordinate sequence with
|
||
if len(c1) == 2:
|
||
tset = (5, 23)
|
||
else:
|
||
tset = (5, 23, 8)
|
||
cs[i] = tset
|
||
|
||
# Making sure every set point matches what we expect
|
||
for j in range(len(tset)):
|
||
cs[i] = tset
|
||
self.assertEqual(tset[j], cs[i][j])
|
||
|
||
def test_relate_pattern(self):
|
||
"Testing relate() and relate_pattern()."
|
||
g = fromstr("POINT (0 0)")
|
||
with self.assertRaises(GEOSException):
|
||
g.relate_pattern(0, "invalid pattern, yo")
|
||
for rg in self.geometries.relate_geoms:
|
||
a = fromstr(rg.wkt_a)
|
||
b = fromstr(rg.wkt_b)
|
||
self.assertEqual(rg.result, a.relate_pattern(b, rg.pattern))
|
||
self.assertEqual(rg.pattern, a.relate(b))
|
||
|
||
def test_intersection(self):
|
||
"Testing intersects() and intersection()."
|
||
for i in range(len(self.geometries.topology_geoms)):
|
||
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
|
||
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
|
||
i1 = fromstr(self.geometries.intersect_geoms[i].wkt)
|
||
self.assertIs(a.intersects(b), True)
|
||
i2 = a.intersection(b)
|
||
self.assertTrue(i1.equals(i2))
|
||
self.assertTrue(i1.equals(a & b)) # __and__ is intersection operator
|
||
a &= b # testing __iand__
|
||
self.assertTrue(i1.equals(a))
|
||
|
||
def test_union(self):
|
||
"Testing union()."
|
||
for i in range(len(self.geometries.topology_geoms)):
|
||
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
|
||
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
|
||
u1 = fromstr(self.geometries.union_geoms[i].wkt)
|
||
u2 = a.union(b)
|
||
self.assertTrue(u1.equals(u2))
|
||
self.assertTrue(u1.equals(a | b)) # __or__ is union operator
|
||
a |= b # testing __ior__
|
||
self.assertTrue(u1.equals(a))
|
||
|
||
def test_unary_union(self):
|
||
"Testing unary_union."
|
||
for i in range(len(self.geometries.topology_geoms)):
|
||
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
|
||
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
|
||
u1 = fromstr(self.geometries.union_geoms[i].wkt)
|
||
u2 = GeometryCollection(a, b).unary_union
|
||
self.assertTrue(u1.equals(u2))
|
||
|
||
def test_difference(self):
|
||
"Testing difference()."
|
||
for i in range(len(self.geometries.topology_geoms)):
|
||
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
|
||
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
|
||
d1 = fromstr(self.geometries.diff_geoms[i].wkt)
|
||
d2 = a.difference(b)
|
||
self.assertTrue(d1.equals(d2))
|
||
self.assertTrue(d1.equals(a - b)) # __sub__ is difference operator
|
||
a -= b # testing __isub__
|
||
self.assertTrue(d1.equals(a))
|
||
|
||
def test_symdifference(self):
|
||
"Testing sym_difference()."
|
||
for i in range(len(self.geometries.topology_geoms)):
|
||
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
|
||
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
|
||
d1 = fromstr(self.geometries.sdiff_geoms[i].wkt)
|
||
d2 = a.sym_difference(b)
|
||
self.assertTrue(d1.equals(d2))
|
||
self.assertTrue(
|
||
d1.equals(a ^ b)
|
||
) # __xor__ is symmetric difference operator
|
||
a ^= b # testing __ixor__
|
||
self.assertTrue(d1.equals(a))
|
||
|
||
def test_buffer(self):
|
||
bg = self.geometries.buffer_geoms[0]
|
||
g = fromstr(bg.wkt)
|
||
|
||
# Can't use a floating-point for the number of quadsegs.
|
||
with self.assertRaises(ctypes.ArgumentError):
|
||
g.buffer(bg.width, quadsegs=1.1)
|
||
|
||
self._test_buffer(self.geometries.buffer_geoms, "buffer")
|
||
|
||
def test_buffer_with_style(self):
|
||
bg = self.geometries.buffer_with_style_geoms[0]
|
||
g = fromstr(bg.wkt)
|
||
|
||
# Can't use a floating-point for the number of quadsegs.
|
||
with self.assertRaises(ctypes.ArgumentError):
|
||
g.buffer_with_style(bg.width, quadsegs=1.1)
|
||
|
||
# Can't use a floating-point for the end cap style.
|
||
with self.assertRaises(ctypes.ArgumentError):
|
||
g.buffer_with_style(bg.width, end_cap_style=1.2)
|
||
# Can't use a end cap style that is not in the enum.
|
||
with self.assertRaises(GEOSException):
|
||
g.buffer_with_style(bg.width, end_cap_style=55)
|
||
|
||
# Can't use a floating-point for the join style.
|
||
with self.assertRaises(ctypes.ArgumentError):
|
||
g.buffer_with_style(bg.width, join_style=1.3)
|
||
# Can't use a join style that is not in the enum.
|
||
with self.assertRaises(GEOSException):
|
||
g.buffer_with_style(bg.width, join_style=66)
|
||
|
||
self._test_buffer(
|
||
itertools.chain(
|
||
self.geometries.buffer_geoms, self.geometries.buffer_with_style_geoms
|
||
),
|
||
"buffer_with_style",
|
||
)
|
||
|
||
def _test_buffer(self, geometries, buffer_method_name):
|
||
for bg in geometries:
|
||
g = fromstr(bg.wkt)
|
||
|
||
# The buffer we expect
|
||
exp_buf = fromstr(bg.buffer_wkt)
|
||
|
||
# Constructing our buffer
|
||
buf_kwargs = {
|
||
kwarg_name: getattr(bg, kwarg_name)
|
||
for kwarg_name in (
|
||
"width",
|
||
"quadsegs",
|
||
"end_cap_style",
|
||
"join_style",
|
||
"mitre_limit",
|
||
)
|
||
if hasattr(bg, kwarg_name)
|
||
}
|
||
buf = getattr(g, buffer_method_name)(**buf_kwargs)
|
||
self.assertEqual(exp_buf.num_coords, buf.num_coords)
|
||
self.assertEqual(len(exp_buf), len(buf))
|
||
|
||
# Now assuring that each point in the buffer is almost equal
|
||
for j in range(len(exp_buf)):
|
||
exp_ring = exp_buf[j]
|
||
buf_ring = buf[j]
|
||
self.assertEqual(len(exp_ring), len(buf_ring))
|
||
for k in range(len(exp_ring)):
|
||
# Asserting the X, Y of each point are almost equal (due to
|
||
# floating point imprecision).
|
||
self.assertAlmostEqual(exp_ring[k][0], buf_ring[k][0], 9)
|
||
self.assertAlmostEqual(exp_ring[k][1], buf_ring[k][1], 9)
|
||
|
||
def test_covers(self):
|
||
poly = Polygon(((0, 0), (0, 10), (10, 10), (10, 0), (0, 0)))
|
||
self.assertTrue(poly.covers(Point(5, 5)))
|
||
self.assertFalse(poly.covers(Point(100, 100)))
|
||
|
||
def test_closed(self):
|
||
ls_closed = LineString((0, 0), (1, 1), (0, 0))
|
||
ls_not_closed = LineString((0, 0), (1, 1))
|
||
self.assertFalse(ls_not_closed.closed)
|
||
self.assertTrue(ls_closed.closed)
|
||
|
||
def test_srid(self):
|
||
"Testing the SRID property and keyword."
|
||
# Testing SRID keyword on Point
|
||
pnt = Point(5, 23, srid=4326)
|
||
self.assertEqual(4326, pnt.srid)
|
||
pnt.srid = 3084
|
||
self.assertEqual(3084, pnt.srid)
|
||
with self.assertRaises(ctypes.ArgumentError):
|
||
pnt.srid = "4326"
|
||
|
||
# Testing SRID keyword on fromstr(), and on Polygon rings.
|
||
poly = fromstr(self.geometries.polygons[1].wkt, srid=4269)
|
||
self.assertEqual(4269, poly.srid)
|
||
for ring in poly:
|
||
self.assertEqual(4269, ring.srid)
|
||
poly.srid = 4326
|
||
self.assertEqual(4326, poly.shell.srid)
|
||
|
||
# Testing SRID keyword on GeometryCollection
|
||
gc = GeometryCollection(
|
||
Point(5, 23), LineString((0, 0), (1.5, 1.5), (3, 3)), srid=32021
|
||
)
|
||
self.assertEqual(32021, gc.srid)
|
||
for i in range(len(gc)):
|
||
self.assertEqual(32021, gc[i].srid)
|
||
|
||
# GEOS may get the SRID from HEXEWKB
|
||
# 'POINT(5 23)' at SRID=4326 in hex form -- obtained from PostGIS
|
||
# using `SELECT GeomFromText('POINT (5 23)', 4326);`.
|
||
hex = "0101000020E610000000000000000014400000000000003740"
|
||
p1 = fromstr(hex)
|
||
self.assertEqual(4326, p1.srid)
|
||
|
||
p2 = fromstr(p1.hex)
|
||
self.assertIsNone(p2.srid)
|
||
p3 = fromstr(p1.hex, srid=-1) # -1 is intended.
|
||
self.assertEqual(-1, p3.srid)
|
||
|
||
# Testing that geometry SRID could be set to its own value
|
||
pnt_wo_srid = Point(1, 1)
|
||
pnt_wo_srid.srid = pnt_wo_srid.srid
|
||
|
||
# Input geometries that have an SRID.
|
||
self.assertEqual(GEOSGeometry(pnt.ewkt, srid=pnt.srid).srid, pnt.srid)
|
||
self.assertEqual(GEOSGeometry(pnt.ewkb, srid=pnt.srid).srid, pnt.srid)
|
||
with self.assertRaisesMessage(
|
||
ValueError, "Input geometry already has SRID: %d." % pnt.srid
|
||
):
|
||
GEOSGeometry(pnt.ewkt, srid=1)
|
||
with self.assertRaisesMessage(
|
||
ValueError, "Input geometry already has SRID: %d." % pnt.srid
|
||
):
|
||
GEOSGeometry(pnt.ewkb, srid=1)
|
||
|
||
def test_custom_srid(self):
|
||
"""Test with a null srid and a srid unknown to GDAL."""
|
||
for srid in [None, 999999]:
|
||
pnt = Point(111200, 220900, srid=srid)
|
||
self.assertTrue(
|
||
pnt.ewkt.startswith(
|
||
("SRID=%s;" % srid if srid else "") + "POINT (111200"
|
||
)
|
||
)
|
||
self.assertIsInstance(pnt.ogr, gdal.OGRGeometry)
|
||
self.assertIsNone(pnt.srs)
|
||
|
||
# Test conversion from custom to a known srid
|
||
c2w = gdal.CoordTransform(
|
||
gdal.SpatialReference(
|
||
"+proj=mill +lat_0=0 +lon_0=0 +x_0=0 +y_0=0 +R_A +datum=WGS84 "
|
||
"+units=m +no_defs"
|
||
),
|
||
gdal.SpatialReference(4326),
|
||
)
|
||
new_pnt = pnt.transform(c2w, clone=True)
|
||
self.assertEqual(new_pnt.srid, 4326)
|
||
self.assertAlmostEqual(new_pnt.x, 1, 1)
|
||
self.assertAlmostEqual(new_pnt.y, 2, 1)
|
||
|
||
def test_mutable_geometries(self):
|
||
"Testing the mutability of Polygons and Geometry Collections."
|
||
# ### Testing the mutability of Polygons ###
|
||
for p in self.geometries.polygons:
|
||
poly = fromstr(p.wkt)
|
||
|
||
# Should only be able to use __setitem__ with LinearRing geometries.
|
||
with self.assertRaises(TypeError):
|
||
poly.__setitem__(0, LineString((1, 1), (2, 2)))
|
||
|
||
# Constructing the new shell by adding 500 to every point in the old shell.
|
||
shell_tup = poly.shell.tuple
|
||
new_coords = []
|
||
for point in shell_tup:
|
||
new_coords.append((point[0] + 500.0, point[1] + 500.0))
|
||
new_shell = LinearRing(*tuple(new_coords))
|
||
|
||
# Assigning polygon's exterior ring w/the new shell
|
||
poly.exterior_ring = new_shell
|
||
str(new_shell) # new shell is still accessible
|
||
self.assertEqual(poly.exterior_ring, new_shell)
|
||
self.assertEqual(poly[0], new_shell)
|
||
|
||
# ### Testing the mutability of Geometry Collections
|
||
for tg in self.geometries.multipoints:
|
||
mp = fromstr(tg.wkt)
|
||
for i in range(len(mp)):
|
||
# Creating a random point.
|
||
pnt = mp[i]
|
||
new = Point(random.randint(21, 100), random.randint(21, 100))
|
||
# Testing the assignment
|
||
mp[i] = new
|
||
str(new) # what was used for the assignment is still accessible
|
||
self.assertEqual(mp[i], new)
|
||
self.assertEqual(mp[i].wkt, new.wkt)
|
||
self.assertNotEqual(pnt, mp[i])
|
||
|
||
# MultiPolygons involve much more memory management because each
|
||
# Polygon w/in the collection has its own rings.
|
||
for tg in self.geometries.multipolygons:
|
||
mpoly = fromstr(tg.wkt)
|
||
for i in range(len(mpoly)):
|
||
poly = mpoly[i]
|
||
old_poly = mpoly[i]
|
||
# Offsetting the each ring in the polygon by 500.
|
||
for j in range(len(poly)):
|
||
r = poly[j]
|
||
for k in range(len(r)):
|
||
r[k] = (r[k][0] + 500.0, r[k][1] + 500.0)
|
||
poly[j] = r
|
||
|
||
self.assertNotEqual(mpoly[i], poly)
|
||
# Testing the assignment
|
||
mpoly[i] = poly
|
||
str(poly) # Still accessible
|
||
self.assertEqual(mpoly[i], poly)
|
||
self.assertNotEqual(mpoly[i], old_poly)
|
||
|
||
# Extreme (!!) __setitem__ -- no longer works, have to detect
|
||
# in the first object that __setitem__ is called in the subsequent
|
||
# objects -- maybe mpoly[0, 0, 0] = (3.14, 2.71)?
|
||
# mpoly[0][0][0] = (3.14, 2.71)
|
||
# self.assertEqual((3.14, 2.71), mpoly[0][0][0])
|
||
# Doing it more slowly..
|
||
# self.assertEqual((3.14, 2.71), mpoly[0].shell[0])
|
||
# del mpoly
|
||
|
||
def test_point_list_assignment(self):
|
||
p = Point(0, 0)
|
||
|
||
p[:] = (1, 2, 3)
|
||
self.assertEqual(p, Point(1, 2, 3))
|
||
|
||
p[:] = ()
|
||
self.assertEqual(p.wkt, Point())
|
||
|
||
p[:] = (1, 2)
|
||
self.assertEqual(p.wkt, Point(1, 2))
|
||
|
||
with self.assertRaises(ValueError):
|
||
p[:] = (1,)
|
||
with self.assertRaises(ValueError):
|
||
p[:] = (1, 2, 3, 4, 5)
|
||
|
||
def test_linestring_list_assignment(self):
|
||
ls = LineString((0, 0), (1, 1))
|
||
|
||
ls[:] = ()
|
||
self.assertEqual(ls, LineString())
|
||
|
||
ls[:] = ((0, 0), (1, 1), (2, 2))
|
||
self.assertEqual(ls, LineString((0, 0), (1, 1), (2, 2)))
|
||
|
||
with self.assertRaises(ValueError):
|
||
ls[:] = (1,)
|
||
|
||
def test_linearring_list_assignment(self):
|
||
ls = LinearRing((0, 0), (0, 1), (1, 1), (0, 0))
|
||
|
||
ls[:] = ()
|
||
self.assertEqual(ls, LinearRing())
|
||
|
||
ls[:] = ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))
|
||
self.assertEqual(ls, LinearRing((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
|
||
|
||
with self.assertRaises(ValueError):
|
||
ls[:] = ((0, 0), (1, 1), (2, 2))
|
||
|
||
def test_polygon_list_assignment(self):
|
||
pol = Polygon()
|
||
|
||
pol[:] = (((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)),)
|
||
self.assertEqual(
|
||
pol,
|
||
Polygon(
|
||
((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)),
|
||
),
|
||
)
|
||
|
||
pol[:] = ()
|
||
self.assertEqual(pol, Polygon())
|
||
|
||
def test_geometry_collection_list_assignment(self):
|
||
p = Point()
|
||
gc = GeometryCollection()
|
||
|
||
gc[:] = [p]
|
||
self.assertEqual(gc, GeometryCollection(p))
|
||
|
||
gc[:] = ()
|
||
self.assertEqual(gc, GeometryCollection())
|
||
|
||
def test_threed(self):
|
||
"Testing three-dimensional geometries."
|
||
# Testing a 3D Point
|
||
pnt = Point(2, 3, 8)
|
||
self.assertEqual((2.0, 3.0, 8.0), pnt.coords)
|
||
with self.assertRaises(TypeError):
|
||
pnt.tuple = (1.0, 2.0)
|
||
pnt.coords = (1.0, 2.0, 3.0)
|
||
self.assertEqual((1.0, 2.0, 3.0), pnt.coords)
|
||
|
||
# Testing a 3D LineString
|
||
ls = LineString((2.0, 3.0, 8.0), (50.0, 250.0, -117.0))
|
||
self.assertEqual(((2.0, 3.0, 8.0), (50.0, 250.0, -117.0)), ls.tuple)
|
||
with self.assertRaises(TypeError):
|
||
ls.__setitem__(0, (1.0, 2.0))
|
||
ls[0] = (1.0, 2.0, 3.0)
|
||
self.assertEqual((1.0, 2.0, 3.0), ls[0])
|
||
|
||
def test_distance(self):
|
||
"Testing the distance() function."
|
||
# Distance to self should be 0.
|
||
pnt = Point(0, 0)
|
||
self.assertEqual(0.0, pnt.distance(Point(0, 0)))
|
||
|
||
# Distance should be 1
|
||
self.assertEqual(1.0, pnt.distance(Point(0, 1)))
|
||
|
||
# Distance should be ~ sqrt(2)
|
||
self.assertAlmostEqual(1.41421356237, pnt.distance(Point(1, 1)), 11)
|
||
|
||
# Distances are from the closest vertex in each geometry --
|
||
# should be 3 (distance from (2, 2) to (5, 2)).
|
||
ls1 = LineString((0, 0), (1, 1), (2, 2))
|
||
ls2 = LineString((5, 2), (6, 1), (7, 0))
|
||
self.assertEqual(3, ls1.distance(ls2))
|
||
|
||
def test_length(self):
|
||
"Testing the length property."
|
||
# Points have 0 length.
|
||
pnt = Point(0, 0)
|
||
self.assertEqual(0.0, pnt.length)
|
||
|
||
# Should be ~ sqrt(2)
|
||
ls = LineString((0, 0), (1, 1))
|
||
self.assertAlmostEqual(1.41421356237, ls.length, 11)
|
||
|
||
# Should be circumference of Polygon
|
||
poly = Polygon(LinearRing((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
|
||
self.assertEqual(4.0, poly.length)
|
||
|
||
# Should be sum of each element's length in collection.
|
||
mpoly = MultiPolygon(poly.clone(), poly)
|
||
self.assertEqual(8.0, mpoly.length)
|
||
|
||
def test_emptyCollections(self):
|
||
"Testing empty geometries and collections."
|
||
geoms = [
|
||
GeometryCollection([]),
|
||
fromstr("GEOMETRYCOLLECTION EMPTY"),
|
||
GeometryCollection(),
|
||
fromstr("POINT EMPTY"),
|
||
Point(),
|
||
fromstr("LINESTRING EMPTY"),
|
||
LineString(),
|
||
fromstr("POLYGON EMPTY"),
|
||
Polygon(),
|
||
fromstr("MULTILINESTRING EMPTY"),
|
||
MultiLineString(),
|
||
fromstr("MULTIPOLYGON EMPTY"),
|
||
MultiPolygon(()),
|
||
MultiPolygon(),
|
||
]
|
||
|
||
if numpy:
|
||
geoms.append(LineString(numpy.array([])))
|
||
|
||
for g in geoms:
|
||
self.assertIs(g.empty, True)
|
||
|
||
# Testing len() and num_geom.
|
||
if isinstance(g, Polygon):
|
||
self.assertEqual(1, len(g)) # Has one empty linear ring
|
||
self.assertEqual(1, g.num_geom)
|
||
self.assertEqual(0, len(g[0]))
|
||
elif isinstance(g, (Point, LineString)):
|
||
self.assertEqual(1, g.num_geom)
|
||
self.assertEqual(0, len(g))
|
||
else:
|
||
self.assertEqual(0, g.num_geom)
|
||
self.assertEqual(0, len(g))
|
||
|
||
# Testing __getitem__ (doesn't work on Point or Polygon)
|
||
if isinstance(g, Point):
|
||
# IndexError is not raised in GEOS 3.8.0.
|
||
if geos_version_tuple() != (3, 8, 0):
|
||
with self.assertRaises(IndexError):
|
||
g.x
|
||
elif isinstance(g, Polygon):
|
||
lr = g.shell
|
||
self.assertEqual("LINEARRING EMPTY", lr.wkt)
|
||
self.assertEqual(0, len(lr))
|
||
self.assertIs(lr.empty, True)
|
||
with self.assertRaises(IndexError):
|
||
lr.__getitem__(0)
|
||
else:
|
||
with self.assertRaises(IndexError):
|
||
g.__getitem__(0)
|
||
|
||
def test_collection_dims(self):
|
||
gc = GeometryCollection([])
|
||
self.assertEqual(gc.dims, -1)
|
||
|
||
gc = GeometryCollection(Point(0, 0))
|
||
self.assertEqual(gc.dims, 0)
|
||
|
||
gc = GeometryCollection(LineString((0, 0), (1, 1)), Point(0, 0))
|
||
self.assertEqual(gc.dims, 1)
|
||
|
||
gc = GeometryCollection(
|
||
LineString((0, 0), (1, 1)),
|
||
Polygon(((0, 0), (0, 1), (1, 1), (0, 0))),
|
||
Point(0, 0),
|
||
)
|
||
self.assertEqual(gc.dims, 2)
|
||
|
||
def test_collections_of_collections(self):
|
||
"Testing GeometryCollection handling of other collections."
|
||
# Creating a GeometryCollection WKT string composed of other
|
||
# collections and polygons.
|
||
coll = [mp.wkt for mp in self.geometries.multipolygons if mp.valid]
|
||
coll.extend(mls.wkt for mls in self.geometries.multilinestrings)
|
||
coll.extend(p.wkt for p in self.geometries.polygons)
|
||
coll.extend(mp.wkt for mp in self.geometries.multipoints)
|
||
gc_wkt = "GEOMETRYCOLLECTION(%s)" % ",".join(coll)
|
||
|
||
# Should construct ok from WKT
|
||
gc1 = GEOSGeometry(gc_wkt)
|
||
|
||
# Should also construct ok from individual geometry arguments.
|
||
gc2 = GeometryCollection(*tuple(g for g in gc1))
|
||
|
||
# And, they should be equal.
|
||
self.assertEqual(gc1, gc2)
|
||
|
||
def test_gdal(self):
|
||
"Testing `ogr` and `srs` properties."
|
||
g1 = fromstr("POINT(5 23)")
|
||
self.assertIsInstance(g1.ogr, gdal.OGRGeometry)
|
||
self.assertIsNone(g1.srs)
|
||
|
||
g1_3d = fromstr("POINT(5 23 8)")
|
||
self.assertIsInstance(g1_3d.ogr, gdal.OGRGeometry)
|
||
self.assertEqual(g1_3d.ogr.z, 8)
|
||
|
||
g2 = fromstr("LINESTRING(0 0, 5 5, 23 23)", srid=4326)
|
||
self.assertIsInstance(g2.ogr, gdal.OGRGeometry)
|
||
self.assertIsInstance(g2.srs, gdal.SpatialReference)
|
||
self.assertEqual(g2.hex, g2.ogr.hex)
|
||
self.assertEqual("WGS 84", g2.srs.name)
|
||
|
||
def test_copy(self):
|
||
"Testing use with the Python `copy` module."
|
||
import copy
|
||
|
||
poly = GEOSGeometry(
|
||
"POLYGON((0 0, 0 23, 23 23, 23 0, 0 0), (5 5, 5 10, 10 10, 10 5, 5 5))"
|
||
)
|
||
cpy1 = copy.copy(poly)
|
||
cpy2 = copy.deepcopy(poly)
|
||
self.assertNotEqual(poly._ptr, cpy1._ptr)
|
||
self.assertNotEqual(poly._ptr, cpy2._ptr)
|
||
|
||
def test_transform(self):
|
||
"Testing `transform` method."
|
||
orig = GEOSGeometry("POINT (-104.609 38.255)", 4326)
|
||
trans = GEOSGeometry("POINT (992385.4472045 481455.4944650)", 2774)
|
||
|
||
# Using a srid, a SpatialReference object, and a CoordTransform object
|
||
# for transformations.
|
||
t1, t2, t3 = orig.clone(), orig.clone(), orig.clone()
|
||
t1.transform(trans.srid)
|
||
t2.transform(gdal.SpatialReference("EPSG:2774"))
|
||
ct = gdal.CoordTransform(
|
||
gdal.SpatialReference("WGS84"), gdal.SpatialReference(2774)
|
||
)
|
||
t3.transform(ct)
|
||
|
||
# Testing use of the `clone` keyword.
|
||
k1 = orig.clone()
|
||
k2 = k1.transform(trans.srid, clone=True)
|
||
self.assertEqual(k1, orig)
|
||
self.assertNotEqual(k1, k2)
|
||
|
||
# Different PROJ versions use different transformations, all are
|
||
# correct as having a 1 meter accuracy.
|
||
prec = -1
|
||
for p in (t1, t2, t3, k2):
|
||
self.assertAlmostEqual(trans.x, p.x, prec)
|
||
self.assertAlmostEqual(trans.y, p.y, prec)
|
||
|
||
def test_transform_3d(self):
|
||
p3d = GEOSGeometry("POINT (5 23 100)", 4326)
|
||
p3d.transform(2774)
|
||
self.assertAlmostEqual(p3d.z, 100, 3)
|
||
|
||
def test_transform_noop(self):
|
||
"""Testing `transform` method (SRID match)"""
|
||
# transform() should no-op if source & dest SRIDs match,
|
||
# regardless of whether GDAL is available.
|
||
g = GEOSGeometry("POINT (-104.609 38.255)", 4326)
|
||
gt = g.tuple
|
||
g.transform(4326)
|
||
self.assertEqual(g.tuple, gt)
|
||
self.assertEqual(g.srid, 4326)
|
||
|
||
g = GEOSGeometry("POINT (-104.609 38.255)", 4326)
|
||
g1 = g.transform(4326, clone=True)
|
||
self.assertEqual(g1.tuple, g.tuple)
|
||
self.assertEqual(g1.srid, 4326)
|
||
self.assertIsNot(g1, g, "Clone didn't happen")
|
||
|
||
def test_transform_nosrid(self):
|
||
"""Testing `transform` method (no SRID or negative SRID)"""
|
||
|
||
g = GEOSGeometry("POINT (-104.609 38.255)", srid=None)
|
||
with self.assertRaises(GEOSException):
|
||
g.transform(2774)
|
||
|
||
g = GEOSGeometry("POINT (-104.609 38.255)", srid=None)
|
||
with self.assertRaises(GEOSException):
|
||
g.transform(2774, clone=True)
|
||
|
||
g = GEOSGeometry("POINT (-104.609 38.255)", srid=-1)
|
||
with self.assertRaises(GEOSException):
|
||
g.transform(2774)
|
||
|
||
g = GEOSGeometry("POINT (-104.609 38.255)", srid=-1)
|
||
with self.assertRaises(GEOSException):
|
||
g.transform(2774, clone=True)
|
||
|
||
def test_extent(self):
|
||
"Testing `extent` method."
|
||
# The xmin, ymin, xmax, ymax of the MultiPoint should be returned.
|
||
mp = MultiPoint(Point(5, 23), Point(0, 0), Point(10, 50))
|
||
self.assertEqual((0.0, 0.0, 10.0, 50.0), mp.extent)
|
||
pnt = Point(5.23, 17.8)
|
||
# Extent of points is just the point itself repeated.
|
||
self.assertEqual((5.23, 17.8, 5.23, 17.8), pnt.extent)
|
||
# Testing on the 'real world' Polygon.
|
||
poly = fromstr(self.geometries.polygons[3].wkt)
|
||
ring = poly.shell
|
||
x, y = ring.x, ring.y
|
||
xmin, ymin = min(x), min(y)
|
||
xmax, ymax = max(x), max(y)
|
||
self.assertEqual((xmin, ymin, xmax, ymax), poly.extent)
|
||
|
||
def test_pickle(self):
|
||
"Testing pickling and unpickling support."
|
||
|
||
# Creating a list of test geometries for pickling,
|
||
# and setting the SRID on some of them.
|
||
def get_geoms(lst, srid=None):
|
||
return [GEOSGeometry(tg.wkt, srid) for tg in lst]
|
||
|
||
tgeoms = get_geoms(self.geometries.points)
|
||
tgeoms.extend(get_geoms(self.geometries.multilinestrings, 4326))
|
||
tgeoms.extend(get_geoms(self.geometries.polygons, 3084))
|
||
tgeoms.extend(get_geoms(self.geometries.multipolygons, 3857))
|
||
tgeoms.append(Point(srid=4326))
|
||
tgeoms.append(Point())
|
||
for geom in tgeoms:
|
||
s1 = pickle.dumps(geom)
|
||
g1 = pickle.loads(s1)
|
||
self.assertEqual(geom, g1)
|
||
self.assertEqual(geom.srid, g1.srid)
|
||
|
||
def test_prepared(self):
|
||
"Testing PreparedGeometry support."
|
||
# Creating a simple multipolygon and getting a prepared version.
|
||
mpoly = GEOSGeometry(
|
||
"MULTIPOLYGON(((0 0,0 5,5 5,5 0,0 0)),((5 5,5 10,10 10,10 5,5 5)))"
|
||
)
|
||
prep = mpoly.prepared
|
||
|
||
# A set of test points.
|
||
pnts = [Point(5, 5), Point(7.5, 7.5), Point(2.5, 7.5)]
|
||
for pnt in pnts:
|
||
# Results should be the same (but faster)
|
||
self.assertEqual(mpoly.contains(pnt), prep.contains(pnt))
|
||
self.assertEqual(mpoly.intersects(pnt), prep.intersects(pnt))
|
||
self.assertEqual(mpoly.covers(pnt), prep.covers(pnt))
|
||
|
||
self.assertTrue(prep.crosses(fromstr("LINESTRING(1 1, 15 15)")))
|
||
self.assertTrue(prep.disjoint(Point(-5, -5)))
|
||
poly = Polygon(((-1, -1), (1, 1), (1, 0), (-1, -1)))
|
||
self.assertTrue(prep.overlaps(poly))
|
||
poly = Polygon(((-5, 0), (-5, 5), (0, 5), (-5, 0)))
|
||
self.assertTrue(prep.touches(poly))
|
||
poly = Polygon(((-1, -1), (-1, 11), (11, 11), (11, -1), (-1, -1)))
|
||
self.assertTrue(prep.within(poly))
|
||
|
||
# Original geometry deletion should not crash the prepared one (#21662)
|
||
del mpoly
|
||
self.assertTrue(prep.covers(Point(5, 5)))
|
||
|
||
def test_line_merge(self):
|
||
"Testing line merge support"
|
||
ref_geoms = (
|
||
fromstr("LINESTRING(1 1, 1 1, 3 3)"),
|
||
fromstr("MULTILINESTRING((1 1, 3 3), (3 3, 4 2))"),
|
||
)
|
||
ref_merged = (
|
||
fromstr("LINESTRING(1 1, 3 3)"),
|
||
fromstr("LINESTRING (1 1, 3 3, 4 2)"),
|
||
)
|
||
for geom, merged in zip(ref_geoms, ref_merged):
|
||
self.assertEqual(merged, geom.merged)
|
||
|
||
def test_valid_reason(self):
|
||
"Testing IsValidReason support"
|
||
|
||
g = GEOSGeometry("POINT(0 0)")
|
||
self.assertTrue(g.valid)
|
||
self.assertIsInstance(g.valid_reason, str)
|
||
self.assertEqual(g.valid_reason, "Valid Geometry")
|
||
|
||
g = GEOSGeometry("LINESTRING(0 0, 0 0)")
|
||
|
||
self.assertFalse(g.valid)
|
||
self.assertIsInstance(g.valid_reason, str)
|
||
self.assertTrue(
|
||
g.valid_reason.startswith("Too few points in geometry component")
|
||
)
|
||
|
||
def test_linearref(self):
|
||
"Testing linear referencing"
|
||
|
||
ls = fromstr("LINESTRING(0 0, 0 10, 10 10, 10 0)")
|
||
mls = fromstr("MULTILINESTRING((0 0, 0 10), (10 0, 10 10))")
|
||
|
||
self.assertEqual(ls.project(Point(0, 20)), 10.0)
|
||
self.assertEqual(ls.project(Point(7, 6)), 24)
|
||
self.assertEqual(ls.project_normalized(Point(0, 20)), 1.0 / 3)
|
||
|
||
self.assertEqual(ls.interpolate(10), Point(0, 10))
|
||
self.assertEqual(ls.interpolate(24), Point(10, 6))
|
||
self.assertEqual(ls.interpolate_normalized(1.0 / 3), Point(0, 10))
|
||
|
||
self.assertEqual(mls.project(Point(0, 20)), 10)
|
||
self.assertEqual(mls.project(Point(7, 6)), 16)
|
||
|
||
self.assertEqual(mls.interpolate(9), Point(0, 9))
|
||
self.assertEqual(mls.interpolate(17), Point(10, 7))
|
||
|
||
def test_deconstructible(self):
|
||
"""
|
||
Geometry classes should be deconstructible.
|
||
"""
|
||
point = Point(4.337844, 50.827537, srid=4326)
|
||
path, args, kwargs = point.deconstruct()
|
||
self.assertEqual(path, "django.contrib.gis.geos.point.Point")
|
||
self.assertEqual(args, (4.337844, 50.827537))
|
||
self.assertEqual(kwargs, {"srid": 4326})
|
||
|
||
ls = LineString(((0, 0), (1, 1)))
|
||
path, args, kwargs = ls.deconstruct()
|
||
self.assertEqual(path, "django.contrib.gis.geos.linestring.LineString")
|
||
self.assertEqual(args, (((0, 0), (1, 1)),))
|
||
self.assertEqual(kwargs, {})
|
||
|
||
ls2 = LineString([Point(0, 0), Point(1, 1)], srid=4326)
|
||
path, args, kwargs = ls2.deconstruct()
|
||
self.assertEqual(path, "django.contrib.gis.geos.linestring.LineString")
|
||
self.assertEqual(args, ([Point(0, 0), Point(1, 1)],))
|
||
self.assertEqual(kwargs, {"srid": 4326})
|
||
|
||
ext_coords = ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))
|
||
int_coords = ((0.4, 0.4), (0.4, 0.6), (0.6, 0.6), (0.6, 0.4), (0.4, 0.4))
|
||
poly = Polygon(ext_coords, int_coords)
|
||
path, args, kwargs = poly.deconstruct()
|
||
self.assertEqual(path, "django.contrib.gis.geos.polygon.Polygon")
|
||
self.assertEqual(args, (ext_coords, int_coords))
|
||
self.assertEqual(kwargs, {})
|
||
|
||
lr = LinearRing((0, 0), (0, 1), (1, 1), (0, 0))
|
||
path, args, kwargs = lr.deconstruct()
|
||
self.assertEqual(path, "django.contrib.gis.geos.linestring.LinearRing")
|
||
self.assertEqual(args, ((0, 0), (0, 1), (1, 1), (0, 0)))
|
||
self.assertEqual(kwargs, {})
|
||
|
||
mp = MultiPoint(Point(0, 0), Point(1, 1))
|
||
path, args, kwargs = mp.deconstruct()
|
||
self.assertEqual(path, "django.contrib.gis.geos.collections.MultiPoint")
|
||
self.assertEqual(args, (Point(0, 0), Point(1, 1)))
|
||
self.assertEqual(kwargs, {})
|
||
|
||
ls1 = LineString((0, 0), (1, 1))
|
||
ls2 = LineString((2, 2), (3, 3))
|
||
mls = MultiLineString(ls1, ls2)
|
||
path, args, kwargs = mls.deconstruct()
|
||
self.assertEqual(path, "django.contrib.gis.geos.collections.MultiLineString")
|
||
self.assertEqual(args, (ls1, ls2))
|
||
self.assertEqual(kwargs, {})
|
||
|
||
p1 = Polygon(((0, 0), (0, 1), (1, 1), (0, 0)))
|
||
p2 = Polygon(((1, 1), (1, 2), (2, 2), (1, 1)))
|
||
mp = MultiPolygon(p1, p2)
|
||
path, args, kwargs = mp.deconstruct()
|
||
self.assertEqual(path, "django.contrib.gis.geos.collections.MultiPolygon")
|
||
self.assertEqual(args, (p1, p2))
|
||
self.assertEqual(kwargs, {})
|
||
|
||
poly = Polygon(((0, 0), (0, 1), (1, 1), (0, 0)))
|
||
gc = GeometryCollection(Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)), poly)
|
||
path, args, kwargs = gc.deconstruct()
|
||
self.assertEqual(path, "django.contrib.gis.geos.collections.GeometryCollection")
|
||
self.assertEqual(
|
||
args, (Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)), poly)
|
||
)
|
||
self.assertEqual(kwargs, {})
|
||
|
||
def test_subclassing(self):
|
||
"""
|
||
GEOSGeometry subclass may itself be subclassed without being forced-cast
|
||
to the parent class during `__init__`.
|
||
"""
|
||
|
||
class ExtendedPolygon(Polygon):
|
||
def __init__(self, *args, data=0, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
self._data = data
|
||
|
||
def __str__(self):
|
||
return "EXT_POLYGON - data: %d - %s" % (self._data, self.wkt)
|
||
|
||
ext_poly = ExtendedPolygon(((0, 0), (0, 1), (1, 1), (0, 0)), data=3)
|
||
self.assertEqual(type(ext_poly), ExtendedPolygon)
|
||
# ExtendedPolygon.__str__ should be called (instead of Polygon.__str__).
|
||
self.assertEqual(
|
||
str(ext_poly), "EXT_POLYGON - data: 3 - POLYGON ((0 0, 0 1, 1 1, 0 0))"
|
||
)
|
||
self.assertJSONEqual(
|
||
ext_poly.json,
|
||
'{"coordinates": [[[0, 0], [0, 1], [1, 1], [0, 0]]], "type": "Polygon"}',
|
||
)
|
||
|
||
def test_geos_version_tuple(self):
|
||
versions = (
|
||
(b"3.0.0rc4-CAPI-1.3.3", (3, 0, 0)),
|
||
(b"3.0.0-CAPI-1.4.1", (3, 0, 0)),
|
||
(b"3.4.0dev-CAPI-1.8.0", (3, 4, 0)),
|
||
(b"3.4.0dev-CAPI-1.8.0 r0", (3, 4, 0)),
|
||
(b"3.6.2-CAPI-1.10.2 4d2925d6", (3, 6, 2)),
|
||
)
|
||
for version_string, version_tuple in versions:
|
||
with self.subTest(version_string=version_string):
|
||
with mock.patch(
|
||
"django.contrib.gis.geos.libgeos.geos_version",
|
||
lambda: version_string,
|
||
):
|
||
self.assertEqual(geos_version_tuple(), version_tuple)
|
||
|
||
def test_from_gml(self):
|
||
self.assertEqual(
|
||
GEOSGeometry("POINT(0 0)"),
|
||
GEOSGeometry.from_gml(
|
||
'<gml:Point gml:id="p21" '
|
||
'srsName="http://www.opengis.net/def/crs/EPSG/0/4326">'
|
||
' <gml:pos srsDimension="2">0 0</gml:pos>'
|
||
"</gml:Point>"
|
||
),
|
||
)
|
||
|
||
def test_from_ewkt(self):
|
||
self.assertEqual(
|
||
GEOSGeometry.from_ewkt("SRID=1;POINT(1 1)"), Point(1, 1, srid=1)
|
||
)
|
||
self.assertEqual(GEOSGeometry.from_ewkt("POINT(1 1)"), Point(1, 1))
|
||
|
||
def test_from_ewkt_empty_string(self):
|
||
msg = "Expected WKT but got an empty string."
|
||
with self.assertRaisesMessage(ValueError, msg):
|
||
GEOSGeometry.from_ewkt("")
|
||
with self.assertRaisesMessage(ValueError, msg):
|
||
GEOSGeometry.from_ewkt("SRID=1;")
|
||
|
||
def test_from_ewkt_invalid_srid(self):
|
||
msg = "EWKT has invalid SRID part."
|
||
with self.assertRaisesMessage(ValueError, msg):
|
||
GEOSGeometry.from_ewkt("SRUD=1;POINT(1 1)")
|
||
with self.assertRaisesMessage(ValueError, msg):
|
||
GEOSGeometry.from_ewkt("SRID=WGS84;POINT(1 1)")
|
||
|
||
def test_fromstr_scientific_wkt(self):
|
||
self.assertEqual(GEOSGeometry("POINT(1.0e-1 1.0e+1)"), Point(0.1, 10))
|
||
|
||
def test_normalize(self):
|
||
multipoint = MultiPoint(Point(0, 0), Point(2, 2), Point(1, 1))
|
||
normalized = MultiPoint(Point(2, 2), Point(1, 1), Point(0, 0))
|
||
# Geometry is normalized in-place and nothing is returned.
|
||
multipoint_1 = multipoint.clone()
|
||
self.assertIsNone(multipoint_1.normalize())
|
||
self.assertEqual(multipoint_1, normalized)
|
||
# If the `clone` keyword is set, then the geometry is not modified and
|
||
# a normalized clone of the geometry is returned instead.
|
||
multipoint_2 = multipoint.normalize(clone=True)
|
||
self.assertEqual(multipoint_2, normalized)
|
||
self.assertNotEqual(multipoint, normalized)
|
||
|
||
def test_make_valid(self):
|
||
poly = GEOSGeometry("POLYGON((0 0, 0 23, 23 0, 23 23, 0 0))")
|
||
self.assertIs(poly.valid, False)
|
||
valid_poly = poly.make_valid()
|
||
self.assertIs(valid_poly.valid, True)
|
||
self.assertNotEqual(valid_poly, poly)
|
||
|
||
valid_poly2 = valid_poly.make_valid()
|
||
self.assertIs(valid_poly2.valid, True)
|
||
self.assertEqual(valid_poly, valid_poly2)
|
||
|
||
def test_empty_point(self):
|
||
p = Point(srid=4326)
|
||
self.assertEqual(p.ogr.ewkt, p.ewkt)
|
||
|
||
self.assertEqual(p.transform(2774, clone=True), Point(srid=2774))
|
||
p.transform(2774)
|
||
self.assertEqual(p, Point(srid=2774))
|
||
|
||
def test_linestring_iter(self):
|
||
ls = LineString((0, 0), (1, 1))
|
||
it = iter(ls)
|
||
# Step into CoordSeq iterator.
|
||
next(it)
|
||
ls[:] = []
|
||
with self.assertRaises(IndexError):
|
||
next(it)
|