mirror of
https://github.com/django/django.git
synced 2025-01-22 08:10:28 +00:00
45f59d0eab
Spatialite 5.1 added support for BoundingCircle (GEOSMinimumBoundingCircle). GEOS 3.7 is required which is lower than Django's currently supported minmum of 3.8. https://groups.google.com/g/spatialite-users/c/hAJ2SgitN4M https://www.gaia-gis.it/gaia-sins/spatialite-sql-5.1.0.html
849 lines
34 KiB
Python
849 lines
34 KiB
Python
import json
|
|
import math
|
|
import re
|
|
from decimal import Decimal
|
|
|
|
from django.contrib.gis.db.models import GeometryField, PolygonField, functions
|
|
from django.contrib.gis.geos import GEOSGeometry, LineString, Point, Polygon, fromstr
|
|
from django.contrib.gis.measure import Area
|
|
from django.db import NotSupportedError, connection
|
|
from django.db.models import IntegerField, Sum, Value
|
|
from django.test import TestCase, skipUnlessDBFeature
|
|
|
|
from ..utils import FuncTestMixin
|
|
from .models import City, Country, CountryWebMercator, ManyPointModel, State, Track
|
|
|
|
|
|
class GISFunctionsTests(FuncTestMixin, TestCase):
|
|
"""
|
|
Testing functions from django/contrib/gis/db/models/functions.py.
|
|
Area/Distance/Length/Perimeter are tested in distapp/tests.
|
|
|
|
Please keep the tests in function's alphabetic order.
|
|
"""
|
|
|
|
fixtures = ["initial"]
|
|
|
|
def test_asgeojson(self):
|
|
if not connection.features.has_AsGeoJSON_function:
|
|
with self.assertRaises(NotSupportedError):
|
|
list(Country.objects.annotate(json=functions.AsGeoJSON("mpoly")))
|
|
return
|
|
|
|
pueblo_json = '{"type":"Point","coordinates":[-104.609252,38.255001]}'
|
|
houston_json = json.loads(
|
|
'{"type":"Point","crs":{"type":"name","properties":'
|
|
'{"name":"EPSG:4326"}},"coordinates":[-95.363151,29.763374]}'
|
|
)
|
|
victoria_json = json.loads(
|
|
'{"type":"Point",'
|
|
'"bbox":[-123.30519600,48.46261100,-123.30519600,48.46261100],'
|
|
'"coordinates":[-123.305196,48.462611]}'
|
|
)
|
|
chicago_json = json.loads(
|
|
'{"type":"Point","crs":{"type":"name","properties":{"name":"EPSG:4326"}},'
|
|
'"bbox":[-87.65018,41.85039,-87.65018,41.85039],'
|
|
'"coordinates":[-87.65018,41.85039]}'
|
|
)
|
|
if "crs" in connection.features.unsupported_geojson_options:
|
|
del houston_json["crs"]
|
|
del chicago_json["crs"]
|
|
if "bbox" in connection.features.unsupported_geojson_options:
|
|
del chicago_json["bbox"]
|
|
del victoria_json["bbox"]
|
|
if "precision" in connection.features.unsupported_geojson_options:
|
|
chicago_json["coordinates"] = [-87.650175, 41.850385]
|
|
|
|
# Precision argument should only be an integer
|
|
with self.assertRaises(TypeError):
|
|
City.objects.annotate(geojson=functions.AsGeoJSON("point", precision="foo"))
|
|
|
|
# Reference queries and values.
|
|
# SELECT ST_AsGeoJson("geoapp_city"."point", 8, 0)
|
|
# FROM "geoapp_city" WHERE "geoapp_city"."name" = 'Pueblo';
|
|
self.assertJSONEqual(
|
|
pueblo_json,
|
|
City.objects.annotate(geojson=functions.AsGeoJSON("point"))
|
|
.get(name="Pueblo")
|
|
.geojson,
|
|
)
|
|
|
|
# SELECT ST_AsGeoJson("geoapp_city"."point", 8, 2) FROM "geoapp_city"
|
|
# WHERE "geoapp_city"."name" = 'Houston';
|
|
# This time we want to include the CRS by using the `crs` keyword.
|
|
self.assertJSONEqual(
|
|
City.objects.annotate(json=functions.AsGeoJSON("point", crs=True))
|
|
.get(name="Houston")
|
|
.json,
|
|
houston_json,
|
|
)
|
|
|
|
# SELECT ST_AsGeoJson("geoapp_city"."point", 8, 1) FROM "geoapp_city"
|
|
# WHERE "geoapp_city"."name" = 'Houston';
|
|
# This time we include the bounding box by using the `bbox` keyword.
|
|
self.assertJSONEqual(
|
|
City.objects.annotate(geojson=functions.AsGeoJSON("point", bbox=True))
|
|
.get(name="Victoria")
|
|
.geojson,
|
|
victoria_json,
|
|
)
|
|
|
|
# SELECT ST_AsGeoJson("geoapp_city"."point", 5, 3) FROM "geoapp_city"
|
|
# WHERE "geoapp_city"."name" = 'Chicago';
|
|
# Finally, we set every available keyword.
|
|
# MariaDB doesn't limit the number of decimals in bbox.
|
|
if connection.ops.mariadb:
|
|
chicago_json["bbox"] = [-87.650175, 41.850385, -87.650175, 41.850385]
|
|
try:
|
|
self.assertJSONEqual(
|
|
City.objects.annotate(
|
|
geojson=functions.AsGeoJSON(
|
|
"point", bbox=True, crs=True, precision=5
|
|
)
|
|
)
|
|
.get(name="Chicago")
|
|
.geojson,
|
|
chicago_json,
|
|
)
|
|
except AssertionError:
|
|
# Give a second chance with different coords rounding.
|
|
chicago_json["coordinates"][1] = 41.85038
|
|
self.assertJSONEqual(
|
|
City.objects.annotate(
|
|
geojson=functions.AsGeoJSON(
|
|
"point", bbox=True, crs=True, precision=5
|
|
)
|
|
)
|
|
.get(name="Chicago")
|
|
.geojson,
|
|
chicago_json,
|
|
)
|
|
|
|
@skipUnlessDBFeature("has_AsGeoJSON_function")
|
|
def test_asgeojson_option_0(self):
|
|
p1 = Point(1, 1, srid=4326)
|
|
p2 = Point(-87.65018, 41.85039, srid=4326)
|
|
obj = ManyPointModel.objects.create(
|
|
point1=p1,
|
|
point2=p2,
|
|
point3=p2.transform(3857, clone=True),
|
|
)
|
|
self.assertJSONEqual(
|
|
ManyPointModel.objects.annotate(geojson=functions.AsGeoJSON("point3"))
|
|
.get(pk=obj.pk)
|
|
.geojson,
|
|
# GeoJSON without CRS.
|
|
json.loads(
|
|
'{"type":"Point","coordinates":[-9757173.40553877, 5138594.87034608]}'
|
|
),
|
|
)
|
|
|
|
@skipUnlessDBFeature("has_AsGML_function")
|
|
def test_asgml(self):
|
|
# Should throw a TypeError when trying to obtain GML from a
|
|
# non-geometry field.
|
|
qs = City.objects.all()
|
|
with self.assertRaises(TypeError):
|
|
qs.annotate(gml=functions.AsGML("name"))
|
|
ptown = City.objects.annotate(gml=functions.AsGML("point", precision=9)).get(
|
|
name="Pueblo"
|
|
)
|
|
|
|
if connection.ops.oracle:
|
|
# No precision parameter for Oracle :-/
|
|
gml_regex = re.compile(
|
|
r'^<gml:Point srsName="EPSG:4326" '
|
|
r'xmlns:gml="http://www.opengis.net/gml">'
|
|
r'<gml:coordinates decimal="\." cs="," ts=" ">'
|
|
r"-104.60925\d+,38.25500\d+ "
|
|
r"</gml:coordinates></gml:Point>"
|
|
)
|
|
else:
|
|
gml_regex = re.compile(
|
|
r'^<gml:Point srsName="(urn:ogc:def:crs:)?EPSG:4326"><gml:coordinates>'
|
|
r"-104\.60925\d+,38\.255001</gml:coordinates></gml:Point>"
|
|
)
|
|
self.assertTrue(gml_regex.match(ptown.gml))
|
|
self.assertIn(
|
|
'<gml:pos srsDimension="2">',
|
|
City.objects.annotate(gml=functions.AsGML("point", version=3))
|
|
.get(name="Pueblo")
|
|
.gml,
|
|
)
|
|
|
|
@skipUnlessDBFeature("has_AsKML_function")
|
|
def test_askml(self):
|
|
# Should throw a TypeError when trying to obtain KML from a
|
|
# non-geometry field.
|
|
with self.assertRaises(TypeError):
|
|
City.objects.annotate(kml=functions.AsKML("name"))
|
|
|
|
# Ensuring the KML is as expected.
|
|
ptown = City.objects.annotate(kml=functions.AsKML("point", precision=9)).get(
|
|
name="Pueblo"
|
|
)
|
|
self.assertEqual(
|
|
"<Point><coordinates>-104.609252,38.255001</coordinates></Point>", ptown.kml
|
|
)
|
|
|
|
@skipUnlessDBFeature("has_AsSVG_function")
|
|
def test_assvg(self):
|
|
with self.assertRaises(TypeError):
|
|
City.objects.annotate(svg=functions.AsSVG("point", precision="foo"))
|
|
# SELECT AsSVG(geoapp_city.point, 0, 8) FROM geoapp_city WHERE name = 'Pueblo';
|
|
svg1 = 'cx="-104.609252" cy="-38.255001"'
|
|
# Even though relative, only one point so it's practically the same except for
|
|
# the 'c' letter prefix on the x,y values.
|
|
svg2 = svg1.replace("c", "")
|
|
self.assertEqual(
|
|
svg1,
|
|
City.objects.annotate(svg=functions.AsSVG("point")).get(name="Pueblo").svg,
|
|
)
|
|
self.assertEqual(
|
|
svg2,
|
|
City.objects.annotate(svg=functions.AsSVG("point", relative=5))
|
|
.get(name="Pueblo")
|
|
.svg,
|
|
)
|
|
|
|
@skipUnlessDBFeature("has_AsWKB_function")
|
|
def test_aswkb(self):
|
|
wkb = (
|
|
City.objects.annotate(
|
|
wkb=functions.AsWKB(Point(1, 2, srid=4326)),
|
|
)
|
|
.first()
|
|
.wkb
|
|
)
|
|
# WKB is either XDR or NDR encoded.
|
|
self.assertIn(
|
|
bytes(wkb),
|
|
(
|
|
b"\x00\x00\x00\x00\x01?\xf0\x00\x00\x00\x00\x00\x00@\x00\x00"
|
|
b"\x00\x00\x00\x00\x00",
|
|
b"\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?\x00\x00"
|
|
b"\x00\x00\x00\x00\x00@",
|
|
),
|
|
)
|
|
|
|
@skipUnlessDBFeature("has_AsWKT_function")
|
|
def test_aswkt(self):
|
|
wkt = (
|
|
City.objects.annotate(
|
|
wkt=functions.AsWKT(Point(1, 2, srid=4326)),
|
|
)
|
|
.first()
|
|
.wkt
|
|
)
|
|
self.assertEqual(
|
|
wkt, "POINT (1.0 2.0)" if connection.ops.oracle else "POINT(1 2)"
|
|
)
|
|
|
|
@skipUnlessDBFeature("has_Azimuth_function")
|
|
def test_azimuth(self):
|
|
# Returns the azimuth in radians.
|
|
azimuth_expr = functions.Azimuth(Point(0, 0, srid=4326), Point(1, 1, srid=4326))
|
|
self.assertAlmostEqual(
|
|
City.objects.annotate(azimuth=azimuth_expr).first().azimuth,
|
|
math.pi / 4,
|
|
places=2,
|
|
)
|
|
# Returns None if the two points are coincident.
|
|
azimuth_expr = functions.Azimuth(Point(0, 0, srid=4326), Point(0, 0, srid=4326))
|
|
self.assertIsNone(City.objects.annotate(azimuth=azimuth_expr).first().azimuth)
|
|
|
|
@skipUnlessDBFeature("has_BoundingCircle_function")
|
|
def test_bounding_circle(self):
|
|
def circle_num_points(num_seg):
|
|
# num_seg is the number of segments per quarter circle.
|
|
return (4 * num_seg) + 1
|
|
|
|
if connection.ops.postgis:
|
|
expected_areas = (169, 136)
|
|
elif connection.ops.spatialite:
|
|
expected_areas = (168, 135)
|
|
else: # Oracle.
|
|
expected_areas = (171, 126)
|
|
qs = Country.objects.annotate(
|
|
circle=functions.BoundingCircle("mpoly")
|
|
).order_by("name")
|
|
self.assertAlmostEqual(qs[0].circle.area, expected_areas[0], 0)
|
|
self.assertAlmostEqual(qs[1].circle.area, expected_areas[1], 0)
|
|
if connection.ops.postgis:
|
|
# By default num_seg=48.
|
|
self.assertEqual(qs[0].circle.num_points, circle_num_points(48))
|
|
self.assertEqual(qs[1].circle.num_points, circle_num_points(48))
|
|
|
|
tests = [12, Value(12, output_field=IntegerField())]
|
|
for num_seq in tests:
|
|
with self.subTest(num_seq=num_seq):
|
|
qs = Country.objects.annotate(
|
|
circle=functions.BoundingCircle("mpoly", num_seg=num_seq),
|
|
).order_by("name")
|
|
if connection.ops.postgis:
|
|
self.assertGreater(qs[0].circle.area, 168.4, 0)
|
|
self.assertLess(qs[0].circle.area, 169.5, 0)
|
|
self.assertAlmostEqual(qs[1].circle.area, 136, 0)
|
|
self.assertEqual(qs[0].circle.num_points, circle_num_points(12))
|
|
self.assertEqual(qs[1].circle.num_points, circle_num_points(12))
|
|
else:
|
|
self.assertAlmostEqual(qs[0].circle.area, expected_areas[0], 0)
|
|
self.assertAlmostEqual(qs[1].circle.area, expected_areas[1], 0)
|
|
|
|
@skipUnlessDBFeature("has_Centroid_function")
|
|
def test_centroid(self):
|
|
qs = State.objects.exclude(poly__isnull=True).annotate(
|
|
centroid=functions.Centroid("poly")
|
|
)
|
|
tol = (
|
|
1.8 if connection.ops.mysql else (0.1 if connection.ops.oracle else 0.00001)
|
|
)
|
|
for state in qs:
|
|
self.assertTrue(state.poly.centroid.equals_exact(state.centroid, tol))
|
|
|
|
with self.assertRaisesMessage(
|
|
TypeError, "'Centroid' takes exactly 1 argument (2 given)"
|
|
):
|
|
State.objects.annotate(centroid=functions.Centroid("poly", "poly"))
|
|
|
|
@skipUnlessDBFeature("has_Difference_function")
|
|
def test_difference(self):
|
|
geom = Point(5, 23, srid=4326)
|
|
qs = Country.objects.annotate(diff=functions.Difference("mpoly", geom))
|
|
# Oracle does something screwy with the Texas geometry.
|
|
if connection.ops.oracle:
|
|
qs = qs.exclude(name="Texas")
|
|
|
|
for c in qs:
|
|
self.assertTrue(c.mpoly.difference(geom).equals(c.diff))
|
|
|
|
@skipUnlessDBFeature("has_Difference_function", "has_Transform_function")
|
|
def test_difference_mixed_srid(self):
|
|
"""Testing with mixed SRID (Country has default 4326)."""
|
|
geom = Point(556597.4, 2632018.6, srid=3857) # Spherical Mercator
|
|
qs = Country.objects.annotate(difference=functions.Difference("mpoly", geom))
|
|
# Oracle does something screwy with the Texas geometry.
|
|
if connection.ops.oracle:
|
|
qs = qs.exclude(name="Texas")
|
|
for c in qs:
|
|
self.assertTrue(c.mpoly.difference(geom).equals(c.difference))
|
|
|
|
@skipUnlessDBFeature("has_Envelope_function")
|
|
def test_envelope(self):
|
|
countries = Country.objects.annotate(envelope=functions.Envelope("mpoly"))
|
|
for country in countries:
|
|
self.assertTrue(country.envelope.equals(country.mpoly.envelope))
|
|
|
|
@skipUnlessDBFeature("has_ForcePolygonCW_function")
|
|
def test_force_polygon_cw(self):
|
|
rings = (
|
|
((0, 0), (5, 0), (0, 5), (0, 0)),
|
|
((1, 1), (1, 3), (3, 1), (1, 1)),
|
|
)
|
|
rhr_rings = (
|
|
((0, 0), (0, 5), (5, 0), (0, 0)),
|
|
((1, 1), (3, 1), (1, 3), (1, 1)),
|
|
)
|
|
State.objects.create(name="Foo", poly=Polygon(*rings))
|
|
st = State.objects.annotate(
|
|
force_polygon_cw=functions.ForcePolygonCW("poly")
|
|
).get(name="Foo")
|
|
self.assertEqual(rhr_rings, st.force_polygon_cw.coords)
|
|
|
|
@skipUnlessDBFeature("has_FromWKB_function")
|
|
def test_fromwkb(self):
|
|
g = Point(56.811078, 60.608647)
|
|
g2 = City.objects.values_list(
|
|
functions.FromWKB(Value(g.wkb.tobytes())),
|
|
flat=True,
|
|
)[0]
|
|
self.assertIs(g.equals_exact(g2, 0.00001), True)
|
|
|
|
@skipUnlessDBFeature("has_FromWKT_function")
|
|
def test_fromwkt(self):
|
|
g = Point(56.811078, 60.608647)
|
|
g2 = City.objects.values_list(
|
|
functions.FromWKT(Value(g.wkt)),
|
|
flat=True,
|
|
)[0]
|
|
self.assertIs(g.equals_exact(g2, 0.00001), True)
|
|
|
|
@skipUnlessDBFeature("has_GeoHash_function")
|
|
def test_geohash(self):
|
|
# Reference query:
|
|
# SELECT ST_GeoHash(point) FROM geoapp_city WHERE name='Houston';
|
|
# SELECT ST_GeoHash(point, 5) FROM geoapp_city WHERE name='Houston';
|
|
ref_hash = "9vk1mfq8jx0c8e0386z6"
|
|
h1 = City.objects.annotate(geohash=functions.GeoHash("point")).get(
|
|
name="Houston"
|
|
)
|
|
h2 = City.objects.annotate(geohash=functions.GeoHash("point", precision=5)).get(
|
|
name="Houston"
|
|
)
|
|
self.assertEqual(ref_hash, h1.geohash[: len(ref_hash)])
|
|
self.assertEqual(ref_hash[:5], h2.geohash)
|
|
|
|
@skipUnlessDBFeature("has_GeometryDistance_function")
|
|
def test_geometry_distance(self):
|
|
point = Point(-90, 40, srid=4326)
|
|
qs = City.objects.annotate(
|
|
distance=functions.GeometryDistance("point", point)
|
|
).order_by("distance")
|
|
distances = (
|
|
2.99091995527296,
|
|
5.33507274054713,
|
|
9.33852187483721,
|
|
9.91769193646233,
|
|
11.556465744884,
|
|
14.713098433352,
|
|
34.3635252198568,
|
|
276.987855073372,
|
|
)
|
|
for city, expected_distance in zip(qs, distances):
|
|
with self.subTest(city=city):
|
|
self.assertAlmostEqual(city.distance, expected_distance)
|
|
|
|
@skipUnlessDBFeature("has_Intersection_function")
|
|
def test_intersection(self):
|
|
geom = Point(5, 23, srid=4326)
|
|
qs = Country.objects.annotate(inter=functions.Intersection("mpoly", geom))
|
|
for c in qs:
|
|
if connection.features.empty_intersection_returns_none:
|
|
self.assertIsNone(c.inter)
|
|
else:
|
|
self.assertIs(c.inter.empty, True)
|
|
|
|
@skipUnlessDBFeature("supports_empty_geometries", "has_IsEmpty_function")
|
|
def test_isempty(self):
|
|
empty = City.objects.create(name="Nowhere", point=Point(srid=4326))
|
|
City.objects.create(name="Somewhere", point=Point(6.825, 47.1, srid=4326))
|
|
self.assertSequenceEqual(
|
|
City.objects.annotate(isempty=functions.IsEmpty("point")).filter(
|
|
isempty=True
|
|
),
|
|
[empty],
|
|
)
|
|
self.assertSequenceEqual(City.objects.filter(point__isempty=True), [empty])
|
|
|
|
@skipUnlessDBFeature("has_IsValid_function")
|
|
def test_isvalid(self):
|
|
valid_geom = fromstr("POLYGON((0 0, 0 1, 1 1, 1 0, 0 0))")
|
|
invalid_geom = fromstr("POLYGON((0 0, 0 1, 1 1, 1 0, 1 1, 1 0, 0 0))")
|
|
State.objects.create(name="valid", poly=valid_geom)
|
|
State.objects.create(name="invalid", poly=invalid_geom)
|
|
valid = (
|
|
State.objects.filter(name="valid")
|
|
.annotate(isvalid=functions.IsValid("poly"))
|
|
.first()
|
|
)
|
|
invalid = (
|
|
State.objects.filter(name="invalid")
|
|
.annotate(isvalid=functions.IsValid("poly"))
|
|
.first()
|
|
)
|
|
self.assertIs(valid.isvalid, True)
|
|
self.assertIs(invalid.isvalid, False)
|
|
|
|
@skipUnlessDBFeature("has_Area_function")
|
|
def test_area_with_regular_aggregate(self):
|
|
# Create projected country objects, for this test to work on all backends.
|
|
for c in Country.objects.all():
|
|
CountryWebMercator.objects.create(
|
|
name=c.name, mpoly=c.mpoly.transform(3857, clone=True)
|
|
)
|
|
# Test in projected coordinate system
|
|
qs = CountryWebMercator.objects.annotate(area_sum=Sum(functions.Area("mpoly")))
|
|
# Some backends (e.g. Oracle) cannot group by multipolygon values, so
|
|
# defer such fields in the aggregation query.
|
|
for c in qs.defer("mpoly"):
|
|
result = c.area_sum
|
|
# If the result is a measure object, get value.
|
|
if isinstance(result, Area):
|
|
result = result.sq_m
|
|
self.assertAlmostEqual((result - c.mpoly.area) / c.mpoly.area, 0)
|
|
|
|
@skipUnlessDBFeature("has_Area_function")
|
|
def test_area_lookups(self):
|
|
# Create projected countries so the test works on all backends.
|
|
CountryWebMercator.objects.bulk_create(
|
|
CountryWebMercator(name=c.name, mpoly=c.mpoly.transform(3857, clone=True))
|
|
for c in Country.objects.all()
|
|
)
|
|
qs = CountryWebMercator.objects.annotate(area=functions.Area("mpoly"))
|
|
self.assertEqual(
|
|
qs.get(area__lt=Area(sq_km=500000)),
|
|
CountryWebMercator.objects.get(name="New Zealand"),
|
|
)
|
|
|
|
with self.assertRaisesMessage(
|
|
ValueError, "AreaField only accepts Area measurement objects."
|
|
):
|
|
qs.get(area__lt=500000)
|
|
|
|
@skipUnlessDBFeature("has_ClosestPoint_function")
|
|
def test_closest_point(self):
|
|
qs = Country.objects.annotate(
|
|
closest_point=functions.ClosestPoint("mpoly", functions.Centroid("mpoly"))
|
|
)
|
|
for country in qs:
|
|
self.assertIsInstance(country.closest_point, Point)
|
|
self.assertEqual(
|
|
country.mpoly.intersection(country.closest_point),
|
|
country.closest_point,
|
|
)
|
|
|
|
@skipUnlessDBFeature("has_LineLocatePoint_function")
|
|
def test_line_locate_point(self):
|
|
pos_expr = functions.LineLocatePoint(
|
|
LineString((0, 0), (0, 3), srid=4326), Point(0, 1, srid=4326)
|
|
)
|
|
self.assertAlmostEqual(
|
|
State.objects.annotate(pos=pos_expr).first().pos, 0.3333333
|
|
)
|
|
|
|
@skipUnlessDBFeature("has_MakeValid_function")
|
|
def test_make_valid(self):
|
|
invalid_geom = fromstr("POLYGON((0 0, 0 1, 1 1, 1 0, 1 1, 1 0, 0 0))")
|
|
State.objects.create(name="invalid", poly=invalid_geom)
|
|
invalid = (
|
|
State.objects.filter(name="invalid")
|
|
.annotate(repaired=functions.MakeValid("poly"))
|
|
.first()
|
|
)
|
|
self.assertIs(invalid.repaired.valid, True)
|
|
self.assertTrue(
|
|
invalid.repaired.equals(
|
|
fromstr("POLYGON((0 0, 0 1, 1 1, 1 0, 0 0))", srid=invalid.poly.srid)
|
|
)
|
|
)
|
|
|
|
@skipUnlessDBFeature("has_MakeValid_function")
|
|
def test_make_valid_multipolygon(self):
|
|
invalid_geom = fromstr(
|
|
"POLYGON((0 0, 0 1 , 1 1 , 1 0, 0 0), (10 0, 10 1, 11 1, 11 0, 10 0))"
|
|
)
|
|
State.objects.create(name="invalid", poly=invalid_geom)
|
|
invalid = (
|
|
State.objects.filter(name="invalid")
|
|
.annotate(
|
|
repaired=functions.MakeValid("poly"),
|
|
)
|
|
.get()
|
|
)
|
|
self.assertIs(invalid.repaired.valid, True)
|
|
self.assertTrue(
|
|
invalid.repaired.equals(
|
|
fromstr(
|
|
"MULTIPOLYGON (((0 0, 0 1, 1 1, 1 0, 0 0)), "
|
|
"((10 0, 10 1, 11 1, 11 0, 10 0)))",
|
|
srid=invalid.poly.srid,
|
|
)
|
|
)
|
|
)
|
|
self.assertEqual(len(invalid.repaired), 2)
|
|
|
|
@skipUnlessDBFeature("has_MakeValid_function")
|
|
def test_make_valid_output_field(self):
|
|
# output_field is GeometryField instance because different geometry
|
|
# types can be returned.
|
|
output_field = functions.MakeValid(
|
|
Value(Polygon(), PolygonField(srid=42)),
|
|
).output_field
|
|
self.assertIs(output_field.__class__, GeometryField)
|
|
self.assertEqual(output_field.srid, 42)
|
|
|
|
@skipUnlessDBFeature("has_MemSize_function")
|
|
def test_memsize(self):
|
|
ptown = City.objects.annotate(size=functions.MemSize("point")).get(
|
|
name="Pueblo"
|
|
)
|
|
# Exact value depends on database and version.
|
|
self.assertTrue(20 <= ptown.size <= 105)
|
|
|
|
@skipUnlessDBFeature("has_NumGeom_function")
|
|
def test_num_geom(self):
|
|
# Both 'countries' only have two geometries.
|
|
for c in Country.objects.annotate(num_geom=functions.NumGeometries("mpoly")):
|
|
self.assertEqual(2, c.num_geom)
|
|
|
|
qs = City.objects.filter(point__isnull=False).annotate(
|
|
num_geom=functions.NumGeometries("point")
|
|
)
|
|
for city in qs:
|
|
# The results for the number of geometries on non-collections
|
|
# depends on the database.
|
|
if connection.ops.mysql or connection.ops.mariadb:
|
|
self.assertIsNone(city.num_geom)
|
|
else:
|
|
self.assertEqual(1, city.num_geom)
|
|
|
|
@skipUnlessDBFeature("has_NumPoint_function")
|
|
def test_num_points(self):
|
|
coords = [(-95.363151, 29.763374), (-95.448601, 29.713803)]
|
|
Track.objects.create(name="Foo", line=LineString(coords))
|
|
qs = Track.objects.annotate(num_points=functions.NumPoints("line"))
|
|
self.assertEqual(qs.first().num_points, 2)
|
|
mpoly_qs = Country.objects.annotate(num_points=functions.NumPoints("mpoly"))
|
|
if not connection.features.supports_num_points_poly:
|
|
for c in mpoly_qs:
|
|
self.assertIsNone(c.num_points)
|
|
return
|
|
|
|
for c in mpoly_qs:
|
|
self.assertEqual(c.mpoly.num_points, c.num_points)
|
|
|
|
for c in City.objects.annotate(num_points=functions.NumPoints("point")):
|
|
self.assertEqual(c.num_points, 1)
|
|
|
|
@skipUnlessDBFeature("has_PointOnSurface_function")
|
|
def test_point_on_surface(self):
|
|
qs = Country.objects.annotate(
|
|
point_on_surface=functions.PointOnSurface("mpoly")
|
|
)
|
|
for country in qs:
|
|
self.assertTrue(country.mpoly.intersection(country.point_on_surface))
|
|
|
|
@skipUnlessDBFeature("has_Reverse_function")
|
|
def test_reverse_geom(self):
|
|
coords = [(-95.363151, 29.763374), (-95.448601, 29.713803)]
|
|
Track.objects.create(name="Foo", line=LineString(coords))
|
|
track = Track.objects.annotate(reverse_geom=functions.Reverse("line")).get(
|
|
name="Foo"
|
|
)
|
|
coords.reverse()
|
|
self.assertEqual(tuple(coords), track.reverse_geom.coords)
|
|
|
|
@skipUnlessDBFeature("has_Scale_function")
|
|
def test_scale(self):
|
|
xfac, yfac = 2, 3
|
|
tol = 5 # The low precision tolerance is for SpatiaLite
|
|
qs = Country.objects.annotate(scaled=functions.Scale("mpoly", xfac, yfac))
|
|
for country in qs:
|
|
for p1, p2 in zip(country.mpoly, country.scaled):
|
|
for r1, r2 in zip(p1, p2):
|
|
for c1, c2 in zip(r1.coords, r2.coords):
|
|
self.assertAlmostEqual(c1[0] * xfac, c2[0], tol)
|
|
self.assertAlmostEqual(c1[1] * yfac, c2[1], tol)
|
|
# Test float/Decimal values
|
|
qs = Country.objects.annotate(
|
|
scaled=functions.Scale("mpoly", 1.5, Decimal("2.5"))
|
|
)
|
|
self.assertGreater(qs[0].scaled.area, qs[0].mpoly.area)
|
|
|
|
@skipUnlessDBFeature("has_SnapToGrid_function")
|
|
def test_snap_to_grid(self):
|
|
# Let's try and break snap_to_grid() with bad combinations of arguments.
|
|
for bad_args in ((), range(3), range(5)):
|
|
with self.assertRaises(ValueError):
|
|
Country.objects.annotate(snap=functions.SnapToGrid("mpoly", *bad_args))
|
|
for bad_args in (("1.0",), (1.0, None), tuple(map(str, range(4)))):
|
|
with self.assertRaises(TypeError):
|
|
Country.objects.annotate(snap=functions.SnapToGrid("mpoly", *bad_args))
|
|
|
|
# Boundary for San Marino, courtesy of Bjorn Sandvik of thematicmapping.org
|
|
# from the world borders dataset he provides.
|
|
wkt = (
|
|
"MULTIPOLYGON(((12.41580 43.95795,12.45055 43.97972,12.45389 43.98167,"
|
|
"12.46250 43.98472,12.47167 43.98694,12.49278 43.98917,"
|
|
"12.50555 43.98861,12.51000 43.98694,12.51028 43.98277,"
|
|
"12.51167 43.94333,12.51056 43.93916,12.49639 43.92333,"
|
|
"12.49500 43.91472,12.48778 43.90583,12.47444 43.89722,"
|
|
"12.46472 43.89555,12.45917 43.89611,12.41639 43.90472,"
|
|
"12.41222 43.90610,12.40782 43.91366,12.40389 43.92667,"
|
|
"12.40500 43.94833,12.40889 43.95499,12.41580 43.95795)))"
|
|
)
|
|
Country.objects.create(name="San Marino", mpoly=fromstr(wkt))
|
|
|
|
# Because floating-point arithmetic isn't exact, we set a tolerance
|
|
# to pass into GEOS `equals_exact`.
|
|
tol = 0.000000001
|
|
|
|
# SELECT AsText(ST_SnapToGrid("geoapp_country"."mpoly", 0.1))
|
|
# FROM "geoapp_country"
|
|
# WHERE "geoapp_country"."name" = 'San Marino';
|
|
ref = fromstr("MULTIPOLYGON(((12.4 44,12.5 44,12.5 43.9,12.4 43.9,12.4 44)))")
|
|
self.assertTrue(
|
|
ref.equals_exact(
|
|
Country.objects.annotate(snap=functions.SnapToGrid("mpoly", 0.1))
|
|
.get(name="San Marino")
|
|
.snap,
|
|
tol,
|
|
)
|
|
)
|
|
|
|
# SELECT AsText(ST_SnapToGrid("geoapp_country"."mpoly", 0.05, 0.23))
|
|
# FROM "geoapp_country"
|
|
# WHERE "geoapp_country"."name" = 'San Marino';
|
|
ref = fromstr(
|
|
"MULTIPOLYGON(((12.4 43.93,12.45 43.93,12.5 43.93,12.45 43.93,12.4 43.93)))"
|
|
)
|
|
self.assertTrue(
|
|
ref.equals_exact(
|
|
Country.objects.annotate(snap=functions.SnapToGrid("mpoly", 0.05, 0.23))
|
|
.get(name="San Marino")
|
|
.snap,
|
|
tol,
|
|
)
|
|
)
|
|
|
|
# SELECT AsText(ST_SnapToGrid("geoapp_country"."mpoly", 0.5, 0.17, 0.05, 0.23))
|
|
# FROM "geoapp_country"
|
|
# WHERE "geoapp_country"."name" = 'San Marino';
|
|
ref = fromstr(
|
|
"MULTIPOLYGON(((12.4 43.87,12.45 43.87,12.45 44.1,12.5 44.1,12.5 43.87,"
|
|
"12.45 43.87,12.4 43.87)))"
|
|
)
|
|
self.assertTrue(
|
|
ref.equals_exact(
|
|
Country.objects.annotate(
|
|
snap=functions.SnapToGrid("mpoly", 0.05, 0.23, 0.5, 0.17)
|
|
)
|
|
.get(name="San Marino")
|
|
.snap,
|
|
tol,
|
|
)
|
|
)
|
|
|
|
@skipUnlessDBFeature("has_SymDifference_function")
|
|
def test_sym_difference(self):
|
|
geom = Point(5, 23, srid=4326)
|
|
qs = Country.objects.annotate(
|
|
sym_difference=functions.SymDifference("mpoly", geom)
|
|
)
|
|
# Oracle does something screwy with the Texas geometry.
|
|
if connection.ops.oracle:
|
|
qs = qs.exclude(name="Texas")
|
|
for country in qs:
|
|
self.assertTrue(
|
|
country.mpoly.sym_difference(geom).equals(country.sym_difference)
|
|
)
|
|
|
|
@skipUnlessDBFeature("has_Transform_function")
|
|
def test_transform(self):
|
|
# Pre-transformed points for Houston and Pueblo.
|
|
ptown = fromstr("POINT(992363.390841912 481455.395105533)", srid=2774)
|
|
|
|
# Asserting the result of the transform operation with the values in
|
|
# the pre-transformed points.
|
|
h = City.objects.annotate(pt=functions.Transform("point", ptown.srid)).get(
|
|
name="Pueblo"
|
|
)
|
|
self.assertEqual(2774, h.pt.srid)
|
|
# Precision is low due to version variations in PROJ and GDAL.
|
|
self.assertLess(ptown.x - h.pt.x, 1)
|
|
self.assertLess(ptown.y - h.pt.y, 1)
|
|
|
|
@skipUnlessDBFeature("has_Translate_function")
|
|
def test_translate(self):
|
|
xfac, yfac = 5, -23
|
|
qs = Country.objects.annotate(
|
|
translated=functions.Translate("mpoly", xfac, yfac)
|
|
)
|
|
for c in qs:
|
|
for p1, p2 in zip(c.mpoly, c.translated):
|
|
for r1, r2 in zip(p1, p2):
|
|
for c1, c2 in zip(r1.coords, r2.coords):
|
|
# The low precision is for SpatiaLite
|
|
self.assertAlmostEqual(c1[0] + xfac, c2[0], 5)
|
|
self.assertAlmostEqual(c1[1] + yfac, c2[1], 5)
|
|
|
|
# Some combined function tests
|
|
@skipUnlessDBFeature(
|
|
"has_Difference_function",
|
|
"has_Intersection_function",
|
|
"has_SymDifference_function",
|
|
"has_Union_function",
|
|
)
|
|
def test_diff_intersection_union(self):
|
|
geom = Point(5, 23, srid=4326)
|
|
qs = Country.objects.annotate(
|
|
difference=functions.Difference("mpoly", geom),
|
|
sym_difference=functions.SymDifference("mpoly", geom),
|
|
union=functions.Union("mpoly", geom),
|
|
intersection=functions.Intersection("mpoly", geom),
|
|
)
|
|
|
|
if connection.ops.oracle:
|
|
# Should be able to execute the queries; however, they won't be the same
|
|
# as GEOS (because Oracle doesn't use GEOS internally like PostGIS or
|
|
# SpatiaLite).
|
|
return
|
|
for c in qs:
|
|
self.assertTrue(c.mpoly.difference(geom).equals(c.difference))
|
|
if connection.features.empty_intersection_returns_none:
|
|
self.assertIsNone(c.intersection)
|
|
else:
|
|
self.assertIs(c.intersection.empty, True)
|
|
self.assertTrue(c.mpoly.sym_difference(geom).equals(c.sym_difference))
|
|
self.assertTrue(c.mpoly.union(geom).equals(c.union))
|
|
|
|
@skipUnlessDBFeature("has_Union_function")
|
|
def test_union(self):
|
|
"""Union with all combinations of geometries/geometry fields."""
|
|
geom = Point(-95.363151, 29.763374, srid=4326)
|
|
|
|
union = (
|
|
City.objects.annotate(union=functions.Union("point", geom))
|
|
.get(name="Dallas")
|
|
.union
|
|
)
|
|
expected = fromstr(
|
|
"MULTIPOINT(-96.801611 32.782057,-95.363151 29.763374)", srid=4326
|
|
)
|
|
self.assertTrue(expected.equals(union))
|
|
|
|
union = (
|
|
City.objects.annotate(union=functions.Union(geom, "point"))
|
|
.get(name="Dallas")
|
|
.union
|
|
)
|
|
self.assertTrue(expected.equals(union))
|
|
|
|
union = (
|
|
City.objects.annotate(union=functions.Union("point", "point"))
|
|
.get(name="Dallas")
|
|
.union
|
|
)
|
|
expected = GEOSGeometry("POINT(-96.801611 32.782057)", srid=4326)
|
|
self.assertTrue(expected.equals(union))
|
|
|
|
union = (
|
|
City.objects.annotate(union=functions.Union(geom, geom))
|
|
.get(name="Dallas")
|
|
.union
|
|
)
|
|
self.assertTrue(geom.equals(union))
|
|
|
|
@skipUnlessDBFeature("has_Union_function", "has_Transform_function")
|
|
def test_union_mixed_srid(self):
|
|
"""The result SRID depends on the order of parameters."""
|
|
geom = Point(61.42915, 55.15402, srid=4326)
|
|
geom_3857 = geom.transform(3857, clone=True)
|
|
tol = 0.001
|
|
|
|
for city in City.objects.annotate(union=functions.Union("point", geom_3857)):
|
|
expected = city.point | geom
|
|
self.assertTrue(city.union.equals_exact(expected, tol))
|
|
self.assertEqual(city.union.srid, 4326)
|
|
|
|
for city in City.objects.annotate(union=functions.Union(geom_3857, "point")):
|
|
expected = geom_3857 | city.point.transform(3857, clone=True)
|
|
self.assertTrue(expected.equals_exact(city.union, tol))
|
|
self.assertEqual(city.union.srid, 3857)
|
|
|
|
def test_argument_validation(self):
|
|
with self.assertRaisesMessage(
|
|
ValueError, "SRID is required for all geometries."
|
|
):
|
|
City.objects.annotate(geo=functions.GeoFunc(Point(1, 1)))
|
|
|
|
msg = "GeoFunc function requires a GeometryField in position 1, got CharField."
|
|
with self.assertRaisesMessage(TypeError, msg):
|
|
City.objects.annotate(geo=functions.GeoFunc("name"))
|
|
|
|
msg = "GeoFunc function requires a geometric argument in position 1."
|
|
with self.assertRaisesMessage(TypeError, msg):
|
|
City.objects.annotate(union=functions.GeoFunc(1, "point")).get(
|
|
name="Dallas"
|
|
)
|