1
0
mirror of https://github.com/django/django.git synced 2024-12-23 17:46:27 +00:00
django/docs/topics/security.txt
Florian Apolloner 27560924ec Fixed a security issue in get_host.
Full disclosure and new release forthcoming.
2012-12-10 22:11:40 +01:00

238 lines
11 KiB
Plaintext

==================
Security in Django
==================
This document is an overview of Django's security features. It includes advice
on securing a Django-powered site.
.. _cross-site-scripting:
Cross site scripting (XSS) protection
=====================================
.. highlightlang:: html+django
XSS attacks allow a user to inject client side scripts into the browsers of
other users. This is usually achieved by storing the malicious scripts in the
database where it will be retrieved and displayed to other users, or by getting
users to click a link which will cause the attacker's JavaScript to be executed
by the user's browser. However, XSS attacks can originate from any untrusted
source of data, such as cookies or Web services, whenever the data is not
sufficiently sanitized before including in a page.
Using Django templates protects you against the majority of XSS attacks.
However, it is important to understand what protections it provides
and its limitations.
Django templates :ref:`escape specific characters <automatic-html-escaping>`
which are particularly dangerous to HTML. While this protects users from most
malicious input, it is not entirely foolproof. For example, it will not
protect the following:
.. code-block:: html+django
<style class={{ var }}>...</style>
If ``var`` is set to ``'class1 onmouseover=javascript:func()'``, this can result
in unauthorized JavaScript execution, depending on how the browser renders
imperfect HTML.
It is also important to be particularly careful when using ``is_safe`` with
custom template tags, the :ttag:`safe` template tag, :mod:`mark_safe
<django.utils.safestring>`, and when autoescape is turned off.
In addition, if you are using the template system to output something other
than HTML, there may be entirely separate characters and words which require
escaping.
You should also be very careful when storing HTML in the database, especially
when that HTML is retrieved and displayed.
Markup library
--------------
If you use :mod:`django.contrib.markup`, you need to ensure that the filters are
only used on trusted input, or that you have correctly configured them to ensure
they do not allow raw HTML output. See the documentation of that module for more
information.
Cross site request forgery (CSRF) protection
============================================
CSRF attacks allow a malicious user to execute actions using the credentials
of another user without that user's knowledge or consent.
Django has built-in protection against most types of CSRF attacks, providing you
have :ref:`enabled and used it <using-csrf>` where appropriate. However, as with
any mitigation technique, there are limitations. For example, it is possible to
disable the CSRF module globally or for particular views. You should only do
this if you know what you are doing. There are other :ref:`limitations
<csrf-limitations>` if your site has subdomains that are outside of your
control.
:ref:`CSRF protection works <how-csrf-works>` by checking for a nonce in each
POST request. This ensures that a malicious user cannot simply "replay" a form
POST to your Web site and have another logged in user unwittingly submit that
form. The malicious user would have to know the nonce, which is user specific
(using a cookie).
When deployed with :ref:`HTTPS <security-recommendation-ssl>`,
``CsrfViewMiddleware`` will check that the HTTP referer header is set to a
URL on the same origin (including subdomain and port). Because HTTPS
provides additional security, it is imperative to ensure connections use HTTPS
where it is available by forwarding insecure connection requests and using
HSTS for supported browsers.
Be very careful with marking views with the ``csrf_exempt`` decorator unless
it is absolutely necessary.
SQL injection protection
========================
SQL injection is a type of attack where a malicious user is able to execute
arbitrary SQL code on a database. This can result in records
being deleted or data leakage.
By using Django's querysets, the resulting SQL will be properly escaped by
the underlying database driver. However, Django also gives developers power to
write :ref:`raw queries <executing-raw-queries>` or execute
:ref:`custom sql <executing-custom-sql>`. These capabilities should be used
sparingly and you should always be careful to properly escape any parameters
that the user can control. In addition, you should exercise caution when using
:meth:`extra() <django.db.models.query.QuerySet.extra>`.
Clickjacking protection
=======================
Clickjacking is a type of attack where a malicious site wraps another site
in a frame. This attack can result in an unsuspecting user being tricked
into performing unintended actions on the target site.
Django contains :ref:`clickjacking protection <clickjacking-prevention>` in
the form of the
:mod:`X-Frame-Options middleware <django.middleware.clickjacking.XFrameOptionsMiddleware>`
which in a supporting browser can prevent a site from being rendered inside
a frame. It is possible to disable the protection on a per view basis
or to configure the exact header value sent.
The middleware is strongly recommended for any site that does not need to have
its pages wrapped in a frame by third party sites, or only needs to allow that
for a small section of the site.
.. _security-recommendation-ssl:
SSL/HTTPS
=========
It is always better for security, though not always practical in all cases, to
deploy your site behind HTTPS. Without this, it is possible for malicious
network users to sniff authentication credentials or any other information
transferred between client and server, and in some cases -- **active** network
attackers -- to alter data that is sent in either direction.
If you want the protection that HTTPS provides, and have enabled it on your
server, there are some additional steps you may need:
* If necessary, set :setting:`SECURE_PROXY_SSL_HEADER`, ensuring that you have
understood the warnings there thoroughly. Failure to do this can result
in CSRF vulnerabilities, and failure to do it correctly can also be
dangerous!
* Set up redirection so that requests over HTTP are redirected to HTTPS.
This could be done using a custom middleware. Please note the caveats under
:setting:`SECURE_PROXY_SSL_HEADER`. For the case of a reverse proxy, it may be
easier or more secure to configure the main Web server to do the redirect to
HTTPS.
* Use 'secure' cookies.
If a browser connects initially via HTTP, which is the default for most
browsers, it is possible for existing cookies to be leaked. For this reason,
you should set your :setting:`SESSION_COOKIE_SECURE` and
:setting:`CSRF_COOKIE_SECURE` settings to ``True``. This instructs the browser
to only send these cookies over HTTPS connections. Note that this will mean
that sessions will not work over HTTP, and the CSRF protection will prevent
any POST data being accepted over HTTP (which will be fine if you are
redirecting all HTTP traffic to HTTPS).
* Use HTTP Strict Transport Security (HSTS)
HSTS is an HTTP header that informs a browser that all future connections
to a particular site should always use HTTPS. Combined with redirecting
requests over HTTP to HTTPS, this will ensure that connections always enjoy
the added security of SSL provided one successful connection has occurred.
HSTS is usually configured on the web server.
.. _host-headers-virtual-hosting:
Host headers and virtual hosting
================================
Django uses the ``Host`` header provided by the client to construct URLs
in certain cases. While these values are sanitized to prevent Cross
Site Scripting attacks, they can be used for Cross-Site Request
Forgery and cache poisoning attacks in some circumstances. We
recommend you ensure your Web server is configured such that:
* It always validates incoming HTTP ``Host`` headers against the expected
host name.
* Disallows requests with no ``Host`` header.
* Is *not* configured with a catch-all virtual host that forwards requests
to a Django application.
Additionally, as of 1.3.1, Django requires you to explicitly enable support for
the ``X-Forwarded-Host`` header if your configuration requires it.
Configuration for Apache
------------------------
The easiest way to get the described behavior in Apache is as follows. Create
a `virtual host`_ using the ServerName_ and ServerAlias_ directives to restrict
the domains Apache reacts to. Please keep in mind that while the directives do
support ports the match is only performed against the hostname. This means that
the ``Host`` header could still contain a port pointing to another webserver on
the same machine. The next step is to make sure that your newly created virtual
host is not also the default virtual host. Apache uses the first virtual host
found in the configuration file as default virtual host. As such you have to
ensure that you have another virtual host which will act as catch-all virtual
host. Just add one if you do not have one already, there is nothing special
about it aside from ensuring it is the first virtual host in the configuration
file. Debian/Ubuntu users usually don't have to take any action, since Apache
ships with a default virtual host in ``sites-available`` which is linked into
``sites-enabled`` as ``000-default`` and included from ``apache2.conf``. Just
make sure not to name your site ``000-abc``, since files are included in
alphabetical order.
.. _virtual host: http://httpd.apache.org/docs/2.2/vhosts/
.. _ServerName: http://httpd.apache.org/docs/2.2/mod/core.html#servername
.. _ServerAlias: http://httpd.apache.org/docs/2.2/mod/core.html#serveralias
.. _additional-security-topics:
Additional security topics
==========================
While Django provides good security protection out of the box, it is still
important to properly deploy your application and take advantage of the
security protection of the Web server, operating system and other components.
* Make sure that your Python code is outside of the Web server's root. This
will ensure that your Python code is not accidentally served as plain text
(or accidentally executed).
* Take care with any :ref:`user uploaded files <file-upload-security>`.
* Django does not throttle requests to authenticate users. To protect against
brute-force attacks against the authentication system, you may consider
deploying a Django plugin or Web server module to throttle these requests.
* If your site accepts file uploads, it is strongly advised that you limit
these uploads in your Web server configuration to a reasonable
size in order to prevent denial of service (DOS) attacks. In Apache, this
can be easily set using the LimitRequestBody_ directive.
* Keep your :setting:`SECRET_KEY` a secret.
* It is a good idea to limit the accessibility of your caching system and
database using a firewall.
.. _LimitRequestBody: http://httpd.apache.org/docs/2.2/mod/core.html#limitrequestbody