1
0
mirror of https://github.com/django/django.git synced 2025-01-18 14:24:39 +00:00

1634 lines
62 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import ctypes
import itertools
import json
import math
import pickle
import random
from binascii import a2b_hex
from io import BytesIO
from unittest import mock, skipIf
from django.contrib.gis import gdal
from django.contrib.gis.geos import (
GeometryCollection,
GEOSException,
GEOSGeometry,
LinearRing,
LineString,
MultiLineString,
MultiPoint,
MultiPolygon,
Point,
Polygon,
fromfile,
fromstr,
)
from django.contrib.gis.geos.libgeos import geos_version_tuple
from django.contrib.gis.shortcuts import numpy
from django.template import Context
from django.template.engine import Engine
from django.test import SimpleTestCase
from ..test_data import TestDataMixin
class GEOSTest(SimpleTestCase, TestDataMixin):
def test_wkt(self):
"Testing WKT output."
for g in self.geometries.wkt_out:
geom = fromstr(g.wkt)
if geom.hasz:
self.assertEqual(g.ewkt, geom.wkt)
def test_wkt_invalid(self):
msg = "String input unrecognized as WKT EWKT, and HEXEWKB."
with self.assertRaisesMessage(ValueError, msg):
fromstr("POINT(٠٠١ ٠)")
with self.assertRaisesMessage(ValueError, msg):
fromstr("SRID=٧٥٨٣;POINT(100 0)")
def test_hex(self):
"Testing HEX output."
for g in self.geometries.hex_wkt:
geom = fromstr(g.wkt)
self.assertEqual(g.hex, geom.hex.decode())
def test_hexewkb(self):
"Testing (HEX)EWKB output."
# For testing HEX(EWKB).
ogc_hex = b"01010000000000000000000000000000000000F03F"
ogc_hex_3d = b"01010000800000000000000000000000000000F03F0000000000000040"
# `SELECT ST_AsHEXEWKB(ST_GeomFromText('POINT(0 1)', 4326));`
hexewkb_2d = b"0101000020E61000000000000000000000000000000000F03F"
# `SELECT ST_AsHEXEWKB(ST_GeomFromEWKT('SRID=4326;POINT(0 1 2)'));`
hexewkb_3d = (
b"01010000A0E61000000000000000000000000000000000F03F0000000000000040"
)
pnt_2d = Point(0, 1, srid=4326)
pnt_3d = Point(0, 1, 2, srid=4326)
# OGC-compliant HEX will not have SRID value.
self.assertEqual(ogc_hex, pnt_2d.hex)
self.assertEqual(ogc_hex_3d, pnt_3d.hex)
# HEXEWKB should be appropriate for its dimension -- have to use an
# a WKBWriter w/dimension set accordingly, else GEOS will insert
# garbage into 3D coordinate if there is none.
self.assertEqual(hexewkb_2d, pnt_2d.hexewkb)
self.assertEqual(hexewkb_3d, pnt_3d.hexewkb)
self.assertIs(GEOSGeometry(hexewkb_3d).hasz, True)
# Same for EWKB.
self.assertEqual(memoryview(a2b_hex(hexewkb_2d)), pnt_2d.ewkb)
self.assertEqual(memoryview(a2b_hex(hexewkb_3d)), pnt_3d.ewkb)
# Redundant sanity check.
self.assertEqual(4326, GEOSGeometry(hexewkb_2d).srid)
def test_kml(self):
"Testing KML output."
for tg in self.geometries.wkt_out:
geom = fromstr(tg.wkt)
kml = getattr(tg, "kml", False)
if kml:
self.assertEqual(kml, geom.kml)
def test_errors(self):
"Testing the Error handlers."
# string-based
for err in self.geometries.errors:
with self.assertRaises((GEOSException, ValueError)):
fromstr(err.wkt)
# Bad WKB
with self.assertRaises(GEOSException):
GEOSGeometry(memoryview(b"0"))
class NotAGeometry:
pass
# Some other object
with self.assertRaises(TypeError):
GEOSGeometry(NotAGeometry())
# None
with self.assertRaises(TypeError):
GEOSGeometry(None)
def test_wkb(self):
"Testing WKB output."
for g in self.geometries.hex_wkt:
geom = fromstr(g.wkt)
wkb = geom.wkb
self.assertEqual(wkb.hex().upper(), g.hex)
def test_create_hex(self):
"Testing creation from HEX."
for g in self.geometries.hex_wkt:
geom_h = GEOSGeometry(g.hex)
# we need to do this so decimal places get normalized
geom_t = fromstr(g.wkt)
self.assertEqual(geom_t.wkt, geom_h.wkt)
def test_create_wkb(self):
"Testing creation from WKB."
for g in self.geometries.hex_wkt:
wkb = memoryview(bytes.fromhex(g.hex))
geom_h = GEOSGeometry(wkb)
# we need to do this so decimal places get normalized
geom_t = fromstr(g.wkt)
self.assertEqual(geom_t.wkt, geom_h.wkt)
def test_ewkt(self):
"Testing EWKT."
srids = (-1, 32140)
for srid in srids:
for p in self.geometries.polygons:
ewkt = "SRID=%d;%s" % (srid, p.wkt)
poly = fromstr(ewkt)
self.assertEqual(srid, poly.srid)
self.assertEqual(srid, poly.shell.srid)
self.assertEqual(srid, fromstr(poly.ewkt).srid) # Checking export
def test_json(self):
"Testing GeoJSON input/output (via GDAL)."
for g in self.geometries.json_geoms:
geom = GEOSGeometry(g.wkt)
if not hasattr(g, "not_equal"):
# Loading jsons to prevent decimal differences
self.assertEqual(json.loads(g.json), json.loads(geom.json))
self.assertEqual(json.loads(g.json), json.loads(geom.geojson))
self.assertEqual(GEOSGeometry(g.wkt, 4326), GEOSGeometry(geom.json))
def test_json_srid(self):
geojson_data = {
"type": "Point",
"coordinates": [2, 49],
"crs": {
"type": "name",
"properties": {"name": "urn:ogc:def:crs:EPSG::4322"},
},
}
self.assertEqual(
GEOSGeometry(json.dumps(geojson_data)), Point(2, 49, srid=4322)
)
def test_fromfile(self):
"Testing the fromfile() factory."
ref_pnt = GEOSGeometry("POINT(5 23)")
wkt_f = BytesIO()
wkt_f.write(ref_pnt.wkt.encode())
wkb_f = BytesIO()
wkb_f.write(bytes(ref_pnt.wkb))
# Other tests use `fromfile()` on string filenames so those
# aren't tested here.
for fh in (wkt_f, wkb_f):
fh.seek(0)
pnt = fromfile(fh)
self.assertEqual(ref_pnt, pnt)
def test_eq(self):
"Testing equivalence."
p = fromstr("POINT(5 23)")
self.assertEqual(p, p.wkt)
self.assertNotEqual(p, "foo")
ls = fromstr("LINESTRING(0 0, 1 1, 5 5)")
self.assertEqual(ls, ls.wkt)
self.assertNotEqual(p, "bar")
self.assertEqual(p, "POINT(5.0 23.0)")
# Error shouldn't be raise on equivalence testing with
# an invalid type.
for g in (p, ls):
self.assertIsNotNone(g)
self.assertNotEqual(g, {"foo": "bar"})
self.assertIsNot(g, False)
def test_hash(self):
point_1 = Point(5, 23)
point_2 = Point(5, 23, srid=4326)
point_3 = Point(5, 23, srid=32632)
multipoint_1 = MultiPoint(point_1, srid=4326)
multipoint_2 = MultiPoint(point_2)
multipoint_3 = MultiPoint(point_3)
self.assertNotEqual(hash(point_1), hash(point_2))
self.assertNotEqual(hash(point_1), hash(point_3))
self.assertNotEqual(hash(point_2), hash(point_3))
self.assertNotEqual(hash(multipoint_1), hash(multipoint_2))
self.assertEqual(hash(multipoint_2), hash(multipoint_3))
self.assertNotEqual(hash(multipoint_1), hash(point_1))
self.assertNotEqual(hash(multipoint_2), hash(point_2))
self.assertNotEqual(hash(multipoint_3), hash(point_3))
def test_eq_with_srid(self):
"Testing non-equivalence with different srids."
p0 = Point(5, 23)
p1 = Point(5, 23, srid=4326)
p2 = Point(5, 23, srid=32632)
# GEOS
self.assertNotEqual(p0, p1)
self.assertNotEqual(p1, p2)
# EWKT
self.assertNotEqual(p0, p1.ewkt)
self.assertNotEqual(p1, p0.ewkt)
self.assertNotEqual(p1, p2.ewkt)
# Equivalence with matching SRIDs
self.assertEqual(p2, p2)
self.assertEqual(p2, p2.ewkt)
# WKT contains no SRID so will not equal
self.assertNotEqual(p2, p2.wkt)
# SRID of 0
self.assertEqual(p0, "SRID=0;POINT (5 23)")
self.assertNotEqual(p1, "SRID=0;POINT (5 23)")
@skipIf(geos_version_tuple() < (3, 12), "GEOS >= 3.12.0 is required")
def test_equals_identical(self):
tests = [
# Empty inputs of different types are not equals_identical.
("POINT EMPTY", "LINESTRING EMPTY", False),
# Empty inputs of different dimensions are not equals_identical.
("POINT EMPTY", "POINT Z EMPTY", False),
# Non-empty inputs of different dimensions are not equals_identical.
("POINT Z (1 2 3)", "POINT M (1 2 3)", False),
("POINT ZM (1 2 3 4)", "POINT Z (1 2 3)", False),
# Inputs with different structure are not equals_identical.
("LINESTRING (1 1, 2 2)", "MULTILINESTRING ((1 1, 2 2))", False),
# Inputs with different types are not equals_identical.
(
"GEOMETRYCOLLECTION (LINESTRING (1 1, 2 2))",
"MULTILINESTRING ((1 1, 2 2))",
False,
),
# Same lines are equals_identical.
("LINESTRING M (1 1 0, 2 2 1)", "LINESTRING M (1 1 0, 2 2 1)", True),
# Different lines are not equals_identical.
("LINESTRING M (1 1 0, 2 2 1)", "LINESTRING M (1 1 1, 2 2 1)", False),
# Same polygons are equals_identical.
("POLYGON ((0 0, 1 0, 1 1, 0 0))", "POLYGON ((0 0, 1 0, 1 1, 0 0))", True),
# Different polygons are not equals_identical.
("POLYGON ((0 0, 1 0, 1 1, 0 0))", "POLYGON ((1 0, 1 1, 0 0, 1 0))", False),
# Different polygons (number of holes) are not equals_identical.
(
"POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0), (1 1, 2 1, 2 2, 1 1))",
(
"POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0), (1 1, 2 1, 2 2, 1 1), "
"(3 3, 4 3, 4 4, 3 3))"
),
False,
),
# Same collections are equals_identical.
(
"MULTILINESTRING ((1 1, 2 2), (2 2, 3 3))",
"MULTILINESTRING ((1 1, 2 2), (2 2, 3 3))",
True,
),
# Different collections (structure) are not equals_identical.
(
"MULTILINESTRING ((1 1, 2 2), (2 2, 3 3))",
"MULTILINESTRING ((2 2, 3 3), (1 1, 2 2))",
False,
),
]
for g1, g2, is_equal_identical in tests:
with self.subTest(g1=g1, g2=g2):
self.assertIs(
fromstr(g1).equals_identical(fromstr(g2)), is_equal_identical
)
@skipIf(geos_version_tuple() < (3, 12), "GEOS >= 3.12.0 is required")
def test_infinite_values_equals_identical(self):
# Input with identical infinite values are equals_identical.
g1 = Point(x=float("nan"), y=math.inf)
g2 = Point(x=float("nan"), y=math.inf)
self.assertIs(g1.equals_identical(g2), True)
@mock.patch("django.contrib.gis.geos.libgeos.geos_version", lambda: b"3.11.0")
def test_equals_identical_geos_version(self):
g1 = fromstr("POINT (1 2 3)")
g2 = fromstr("POINT (1 2 3)")
msg = "GEOSGeometry.equals_identical() requires GEOS >= 3.12.0"
with self.assertRaisesMessage(GEOSException, msg):
g1.equals_identical(g2)
def test_points(self):
"Testing Point objects."
prev = fromstr("POINT(0 0)")
for p in self.geometries.points:
# Creating the point from the WKT
pnt = fromstr(p.wkt)
self.assertEqual(pnt.geom_type, "Point")
self.assertEqual(pnt.geom_typeid, 0)
self.assertEqual(pnt.dims, 0)
self.assertEqual(p.x, pnt.x)
self.assertEqual(p.y, pnt.y)
self.assertEqual(pnt, fromstr(p.wkt))
self.assertIs(pnt == prev, False) # Use assertIs() to test __eq__.
# Making sure that the point's X, Y components are what we expect
self.assertAlmostEqual(p.x, pnt.tuple[0], 9)
self.assertAlmostEqual(p.y, pnt.tuple[1], 9)
# Testing the third dimension, and getting the tuple arguments
if hasattr(p, "z"):
self.assertIs(pnt.hasz, True)
self.assertEqual(p.z, pnt.z)
self.assertEqual(p.z, pnt.tuple[2], 9)
tup_args = (p.x, p.y, p.z)
set_tup1 = (2.71, 3.14, 5.23)
set_tup2 = (5.23, 2.71, 3.14)
else:
self.assertIs(pnt.hasz, False)
self.assertIsNone(pnt.z)
tup_args = (p.x, p.y)
set_tup1 = (2.71, 3.14)
set_tup2 = (3.14, 2.71)
# Centroid operation on point should be point itself
self.assertEqual(p.centroid, pnt.centroid.tuple)
# Now testing the different constructors
pnt2 = Point(tup_args) # e.g., Point((1, 2))
pnt3 = Point(*tup_args) # e.g., Point(1, 2)
self.assertEqual(pnt, pnt2)
self.assertEqual(pnt, pnt3)
# Now testing setting the x and y
pnt.y = 3.14
pnt.x = 2.71
self.assertEqual(3.14, pnt.y)
self.assertEqual(2.71, pnt.x)
# Setting via the tuple/coords property
pnt.tuple = set_tup1
self.assertEqual(set_tup1, pnt.tuple)
pnt.coords = set_tup2
self.assertEqual(set_tup2, pnt.coords)
prev = pnt # setting the previous geometry
def test_point_reverse(self):
point = GEOSGeometry("POINT(144.963 -37.8143)", 4326)
self.assertEqual(point.srid, 4326)
point.reverse()
self.assertEqual(point.ewkt, "SRID=4326;POINT (-37.8143 144.963)")
def test_multipoints(self):
"Testing MultiPoint objects."
for mp in self.geometries.multipoints:
mpnt = fromstr(mp.wkt)
self.assertEqual(mpnt.geom_type, "MultiPoint")
self.assertEqual(mpnt.geom_typeid, 4)
self.assertEqual(mpnt.dims, 0)
self.assertAlmostEqual(mp.centroid[0], mpnt.centroid.tuple[0], 9)
self.assertAlmostEqual(mp.centroid[1], mpnt.centroid.tuple[1], 9)
with self.assertRaises(IndexError):
mpnt.__getitem__(len(mpnt))
self.assertEqual(mp.centroid, mpnt.centroid.tuple)
self.assertEqual(mp.coords, tuple(m.tuple for m in mpnt))
for p in mpnt:
self.assertEqual(p.geom_type, "Point")
self.assertEqual(p.geom_typeid, 0)
self.assertIs(p.empty, False)
self.assertIs(p.valid, True)
def test_linestring(self):
"Testing LineString objects."
prev = fromstr("POINT(0 0)")
for line in self.geometries.linestrings:
ls = fromstr(line.wkt)
self.assertEqual(ls.geom_type, "LineString")
self.assertEqual(ls.geom_typeid, 1)
self.assertEqual(ls.dims, 1)
self.assertIs(ls.empty, False)
self.assertIs(ls.ring, False)
if hasattr(line, "centroid"):
self.assertEqual(line.centroid, ls.centroid.tuple)
if hasattr(line, "tup"):
self.assertEqual(line.tup, ls.tuple)
self.assertEqual(ls, fromstr(line.wkt))
self.assertIs(ls == prev, False) # Use assertIs() to test __eq__.
with self.assertRaises(IndexError):
ls.__getitem__(len(ls))
prev = ls
# Creating a LineString from a tuple, list, and numpy array
self.assertEqual(ls, LineString(ls.tuple)) # tuple
self.assertEqual(ls, LineString(*ls.tuple)) # as individual arguments
self.assertEqual(ls, LineString([list(tup) for tup in ls.tuple])) # as list
# Point individual arguments
self.assertEqual(
ls.wkt, LineString(*tuple(Point(tup) for tup in ls.tuple)).wkt
)
if numpy:
self.assertEqual(
ls, LineString(numpy.array(ls.tuple))
) # as numpy array
with self.assertRaisesMessage(
TypeError, "Each coordinate should be a sequence (list or tuple)"
):
LineString((0, 0))
with self.assertRaisesMessage(
ValueError, "LineString requires at least 2 points, got 1."
):
LineString([(0, 0)])
if numpy:
with self.assertRaisesMessage(
ValueError, "LineString requires at least 2 points, got 1."
):
LineString(numpy.array([(0, 0)]))
with mock.patch("django.contrib.gis.geos.linestring.numpy", False):
with self.assertRaisesMessage(
TypeError, "Invalid initialization input for LineStrings."
):
LineString("wrong input")
# Test __iter__().
self.assertEqual(
list(LineString((0, 0), (1, 1), (2, 2))), [(0, 0), (1, 1), (2, 2)]
)
def test_linestring_reverse(self):
line = GEOSGeometry("LINESTRING(144.963 -37.8143,151.2607 -33.887)", 4326)
self.assertEqual(line.srid, 4326)
line.reverse()
self.assertEqual(
line.ewkt, "SRID=4326;LINESTRING (151.2607 -33.887, 144.963 -37.8143)"
)
def test_is_counterclockwise(self):
lr = LinearRing((0, 0), (1, 0), (0, 1), (0, 0))
self.assertIs(lr.is_counterclockwise, True)
lr.reverse()
self.assertIs(lr.is_counterclockwise, False)
msg = "Orientation of an empty LinearRing cannot be determined."
with self.assertRaisesMessage(ValueError, msg):
LinearRing().is_counterclockwise
def test_is_counterclockwise_geos_error(self):
with mock.patch("django.contrib.gis.geos.prototypes.cs_is_ccw") as mocked:
mocked.return_value = 0
mocked.func_name = "GEOSCoordSeq_isCCW"
msg = 'Error encountered in GEOS C function "GEOSCoordSeq_isCCW".'
with self.assertRaisesMessage(GEOSException, msg):
LinearRing((0, 0), (1, 0), (0, 1), (0, 0)).is_counterclockwise
def test_multilinestring(self):
"Testing MultiLineString objects."
prev = fromstr("POINT(0 0)")
for line in self.geometries.multilinestrings:
ml = fromstr(line.wkt)
self.assertEqual(ml.geom_type, "MultiLineString")
self.assertEqual(ml.geom_typeid, 5)
self.assertEqual(ml.dims, 1)
self.assertAlmostEqual(line.centroid[0], ml.centroid.x, 9)
self.assertAlmostEqual(line.centroid[1], ml.centroid.y, 9)
self.assertEqual(ml, fromstr(line.wkt))
self.assertIs(ml == prev, False) # Use assertIs() to test __eq__.
prev = ml
for ls in ml:
self.assertEqual(ls.geom_type, "LineString")
self.assertEqual(ls.geom_typeid, 1)
self.assertIs(ls.empty, False)
with self.assertRaises(IndexError):
ml.__getitem__(len(ml))
self.assertEqual(ml.wkt, MultiLineString(*tuple(s.clone() for s in ml)).wkt)
self.assertEqual(
ml, MultiLineString(*tuple(LineString(s.tuple) for s in ml))
)
def test_linearring(self):
"Testing LinearRing objects."
for rr in self.geometries.linearrings:
lr = fromstr(rr.wkt)
self.assertEqual(lr.geom_type, "LinearRing")
self.assertEqual(lr.geom_typeid, 2)
self.assertEqual(lr.dims, 1)
self.assertEqual(rr.n_p, len(lr))
self.assertIs(lr.valid, True)
self.assertIs(lr.empty, False)
# Creating a LinearRing from a tuple, list, and numpy array
self.assertEqual(lr, LinearRing(lr.tuple))
self.assertEqual(lr, LinearRing(*lr.tuple))
self.assertEqual(lr, LinearRing([list(tup) for tup in lr.tuple]))
if numpy:
self.assertEqual(lr, LinearRing(numpy.array(lr.tuple)))
with self.assertRaisesMessage(
ValueError, "LinearRing requires at least 4 points, got 3."
):
LinearRing((0, 0), (1, 1), (0, 0))
with self.assertRaisesMessage(
ValueError, "LinearRing requires at least 4 points, got 1."
):
LinearRing([(0, 0)])
if numpy:
with self.assertRaisesMessage(
ValueError, "LinearRing requires at least 4 points, got 1."
):
LinearRing(numpy.array([(0, 0)]))
def test_linearring_json(self):
self.assertJSONEqual(
LinearRing((0, 0), (0, 1), (1, 1), (0, 0)).json,
'{"coordinates": [[0, 0], [0, 1], [1, 1], [0, 0]], "type": "LineString"}',
)
def test_polygons_from_bbox(self):
"Testing `from_bbox` class method."
bbox = (-180, -90, 180, 90)
p = Polygon.from_bbox(bbox)
self.assertEqual(bbox, p.extent)
# Testing numerical precision
x = 3.14159265358979323
bbox = (0, 0, 1, x)
p = Polygon.from_bbox(bbox)
y = p.extent[-1]
self.assertEqual(format(x, ".13f"), format(y, ".13f"))
def test_polygons(self):
"Testing Polygon objects."
prev = fromstr("POINT(0 0)")
for p in self.geometries.polygons:
# Creating the Polygon, testing its properties.
poly = fromstr(p.wkt)
self.assertEqual(poly.geom_type, "Polygon")
self.assertEqual(poly.geom_typeid, 3)
self.assertEqual(poly.dims, 2)
self.assertIs(poly.empty, False)
self.assertIs(poly.ring, False)
self.assertEqual(p.n_i, poly.num_interior_rings)
self.assertEqual(p.n_i + 1, len(poly)) # Testing __len__
self.assertEqual(p.n_p, poly.num_points)
# Area & Centroid
self.assertAlmostEqual(p.area, poly.area, 9)
self.assertAlmostEqual(p.centroid[0], poly.centroid.tuple[0], 9)
self.assertAlmostEqual(p.centroid[1], poly.centroid.tuple[1], 9)
# Testing the geometry equivalence
self.assertEqual(poly, fromstr(p.wkt))
# Should not be equal to previous geometry
self.assertIs(poly == prev, False) # Use assertIs() to test __eq__.
self.assertIs(poly != prev, True) # Use assertIs() to test __ne__.
# Testing the exterior ring
ring = poly.exterior_ring
self.assertEqual(ring.geom_type, "LinearRing")
self.assertEqual(ring.geom_typeid, 2)
if p.ext_ring_cs:
self.assertEqual(p.ext_ring_cs, ring.tuple)
self.assertEqual(p.ext_ring_cs, poly[0].tuple) # Testing __getitem__
# Testing __getitem__ and __setitem__ on invalid indices
with self.assertRaises(IndexError):
poly.__getitem__(len(poly))
with self.assertRaises(IndexError):
poly.__setitem__(len(poly), False)
with self.assertRaises(IndexError):
poly.__getitem__(-1 * len(poly) - 1)
# Testing __iter__
for r in poly:
self.assertEqual(r.geom_type, "LinearRing")
self.assertEqual(r.geom_typeid, 2)
# Testing polygon construction.
with self.assertRaises(TypeError):
Polygon(0, [1, 2, 3])
with self.assertRaises(TypeError):
Polygon("foo")
# Polygon(shell, (hole1, ... holeN))
ext_ring, *int_rings = poly
self.assertEqual(poly, Polygon(ext_ring, int_rings))
# Polygon(shell_tuple, hole_tuple1, ... , hole_tupleN)
ring_tuples = tuple(r.tuple for r in poly)
self.assertEqual(poly, Polygon(*ring_tuples))
# Constructing with tuples of LinearRings.
self.assertEqual(poly.wkt, Polygon(*tuple(r for r in poly)).wkt)
self.assertEqual(
poly.wkt, Polygon(*tuple(LinearRing(r.tuple) for r in poly)).wkt
)
def test_polygons_templates(self):
# Accessing Polygon attributes in templates should work.
engine = Engine()
template = engine.from_string("{{ polygons.0.wkt }}")
polygons = [fromstr(p.wkt) for p in self.geometries.multipolygons[:2]]
content = template.render(Context({"polygons": polygons}))
self.assertIn("MULTIPOLYGON (((100", content)
def test_polygon_comparison(self):
p1 = Polygon(((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
p2 = Polygon(((0, 0), (0, 1), (1, 0), (0, 0)))
self.assertGreater(p1, p2)
self.assertLess(p2, p1)
p3 = Polygon(((0, 0), (0, 1), (1, 1), (2, 0), (0, 0)))
p4 = Polygon(((0, 0), (0, 1), (2, 2), (1, 0), (0, 0)))
self.assertGreater(p4, p3)
self.assertLess(p3, p4)
def test_multipolygons(self):
"Testing MultiPolygon objects."
fromstr("POINT (0 0)")
for mp in self.geometries.multipolygons:
mpoly = fromstr(mp.wkt)
self.assertEqual(mpoly.geom_type, "MultiPolygon")
self.assertEqual(mpoly.geom_typeid, 6)
self.assertEqual(mpoly.dims, 2)
self.assertEqual(mp.valid, mpoly.valid)
if mp.valid:
self.assertEqual(mp.num_geom, mpoly.num_geom)
self.assertEqual(mp.n_p, mpoly.num_coords)
self.assertEqual(mp.num_geom, len(mpoly))
with self.assertRaises(IndexError):
mpoly.__getitem__(len(mpoly))
for p in mpoly:
self.assertEqual(p.geom_type, "Polygon")
self.assertEqual(p.geom_typeid, 3)
self.assertIs(p.valid, True)
self.assertEqual(
mpoly.wkt, MultiPolygon(*tuple(poly.clone() for poly in mpoly)).wkt
)
def test_memory_hijinks(self):
"Testing Geometry __del__() on rings and polygons."
# #### Memory issues with rings and poly
# These tests are needed to ensure sanity with writable geometries.
# Getting a polygon with interior rings, and pulling out the interior rings
poly = fromstr(self.geometries.polygons[1].wkt)
ring1 = poly[0]
ring2 = poly[1]
# These deletes should be 'harmless' since they are done on child geometries
del ring1
del ring2
ring1 = poly[0]
ring2 = poly[1]
# Deleting the polygon
del poly
# Access to these rings is OK since they are clones.
str(ring1)
str(ring2)
def test_coord_seq(self):
"Testing Coordinate Sequence objects."
for p in self.geometries.polygons:
if p.ext_ring_cs:
# Constructing the polygon and getting the coordinate sequence
poly = fromstr(p.wkt)
cs = poly.exterior_ring.coord_seq
self.assertEqual(
p.ext_ring_cs, cs.tuple
) # done in the Polygon test too.
self.assertEqual(
len(p.ext_ring_cs), len(cs)
) # Making sure __len__ works
# Checks __getitem__ and __setitem__
for i in range(len(p.ext_ring_cs)):
c1 = p.ext_ring_cs[i] # Expected value
c2 = cs[i] # Value from coordseq
self.assertEqual(c1, c2)
# Constructing the test value to set the coordinate sequence with
if len(c1) == 2:
tset = (5, 23)
else:
tset = (5, 23, 8)
cs[i] = tset
# Making sure every set point matches what we expect
for j in range(len(tset)):
cs[i] = tset
self.assertEqual(tset[j], cs[i][j])
def test_relate_pattern(self):
"Testing relate() and relate_pattern()."
g = fromstr("POINT (0 0)")
with self.assertRaises(GEOSException):
g.relate_pattern(0, "invalid pattern, yo")
for rg in self.geometries.relate_geoms:
a = fromstr(rg.wkt_a)
b = fromstr(rg.wkt_b)
self.assertEqual(rg.result, a.relate_pattern(b, rg.pattern))
self.assertEqual(rg.pattern, a.relate(b))
def test_intersection(self):
"Testing intersects() and intersection()."
for i in range(len(self.geometries.topology_geoms)):
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
i1 = fromstr(self.geometries.intersect_geoms[i].wkt)
self.assertIs(a.intersects(b), True)
i2 = a.intersection(b)
self.assertTrue(i1.equals(i2))
self.assertTrue(i1.equals(a & b)) # __and__ is intersection operator
a &= b # testing __iand__
self.assertTrue(i1.equals(a))
def test_union(self):
"Testing union()."
for i in range(len(self.geometries.topology_geoms)):
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
u1 = fromstr(self.geometries.union_geoms[i].wkt)
u2 = a.union(b)
self.assertTrue(u1.equals(u2))
self.assertTrue(u1.equals(a | b)) # __or__ is union operator
a |= b # testing __ior__
self.assertTrue(u1.equals(a))
def test_unary_union(self):
"Testing unary_union."
for i in range(len(self.geometries.topology_geoms)):
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
u1 = fromstr(self.geometries.union_geoms[i].wkt)
u2 = GeometryCollection(a, b).unary_union
self.assertTrue(u1.equals(u2))
def test_difference(self):
"Testing difference()."
for i in range(len(self.geometries.topology_geoms)):
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
d1 = fromstr(self.geometries.diff_geoms[i].wkt)
d2 = a.difference(b)
self.assertTrue(d1.equals(d2))
self.assertTrue(d1.equals(a - b)) # __sub__ is difference operator
a -= b # testing __isub__
self.assertTrue(d1.equals(a))
def test_symdifference(self):
"Testing sym_difference()."
for i in range(len(self.geometries.topology_geoms)):
a = fromstr(self.geometries.topology_geoms[i].wkt_a)
b = fromstr(self.geometries.topology_geoms[i].wkt_b)
d1 = fromstr(self.geometries.sdiff_geoms[i].wkt)
d2 = a.sym_difference(b)
self.assertTrue(d1.equals(d2))
self.assertTrue(
d1.equals(a ^ b)
) # __xor__ is symmetric difference operator
a ^= b # testing __ixor__
self.assertTrue(d1.equals(a))
def test_buffer(self):
bg = self.geometries.buffer_geoms[0]
g = fromstr(bg.wkt)
# Can't use a floating-point for the number of quadsegs.
with self.assertRaises(ctypes.ArgumentError):
g.buffer(bg.width, quadsegs=1.1)
self._test_buffer(self.geometries.buffer_geoms, "buffer")
def test_buffer_with_style(self):
bg = self.geometries.buffer_with_style_geoms[0]
g = fromstr(bg.wkt)
# Can't use a floating-point for the number of quadsegs.
with self.assertRaises(ctypes.ArgumentError):
g.buffer_with_style(bg.width, quadsegs=1.1)
# Can't use a floating-point for the end cap style.
with self.assertRaises(ctypes.ArgumentError):
g.buffer_with_style(bg.width, end_cap_style=1.2)
# Can't use a end cap style that is not in the enum.
with self.assertRaises(GEOSException):
g.buffer_with_style(bg.width, end_cap_style=55)
# Can't use a floating-point for the join style.
with self.assertRaises(ctypes.ArgumentError):
g.buffer_with_style(bg.width, join_style=1.3)
# Can't use a join style that is not in the enum.
with self.assertRaises(GEOSException):
g.buffer_with_style(bg.width, join_style=66)
self._test_buffer(
itertools.chain(
self.geometries.buffer_geoms, self.geometries.buffer_with_style_geoms
),
"buffer_with_style",
)
def _test_buffer(self, geometries, buffer_method_name):
for bg in geometries:
g = fromstr(bg.wkt)
# The buffer we expect
exp_buf = fromstr(bg.buffer_wkt)
# Constructing our buffer
buf_kwargs = {
kwarg_name: getattr(bg, kwarg_name)
for kwarg_name in (
"width",
"quadsegs",
"end_cap_style",
"join_style",
"mitre_limit",
)
if hasattr(bg, kwarg_name)
}
buf = getattr(g, buffer_method_name)(**buf_kwargs)
self.assertEqual(exp_buf.num_coords, buf.num_coords)
self.assertEqual(len(exp_buf), len(buf))
# Now assuring that each point in the buffer is almost equal
for j in range(len(exp_buf)):
exp_ring = exp_buf[j]
buf_ring = buf[j]
self.assertEqual(len(exp_ring), len(buf_ring))
for k in range(len(exp_ring)):
# Asserting the X, Y of each point are almost equal (due to
# floating point imprecision).
self.assertAlmostEqual(exp_ring[k][0], buf_ring[k][0], 9)
self.assertAlmostEqual(exp_ring[k][1], buf_ring[k][1], 9)
def test_covers(self):
poly = Polygon(((0, 0), (0, 10), (10, 10), (10, 0), (0, 0)))
self.assertTrue(poly.covers(Point(5, 5)))
self.assertFalse(poly.covers(Point(100, 100)))
def test_closed(self):
ls_closed = LineString((0, 0), (1, 1), (0, 0))
ls_not_closed = LineString((0, 0), (1, 1))
self.assertFalse(ls_not_closed.closed)
self.assertTrue(ls_closed.closed)
def test_srid(self):
"Testing the SRID property and keyword."
# Testing SRID keyword on Point
pnt = Point(5, 23, srid=4326)
self.assertEqual(4326, pnt.srid)
pnt.srid = 3084
self.assertEqual(3084, pnt.srid)
with self.assertRaises(ctypes.ArgumentError):
pnt.srid = "4326"
# Testing SRID keyword on fromstr(), and on Polygon rings.
poly = fromstr(self.geometries.polygons[1].wkt, srid=4269)
self.assertEqual(4269, poly.srid)
for ring in poly:
self.assertEqual(4269, ring.srid)
poly.srid = 4326
self.assertEqual(4326, poly.shell.srid)
# Testing SRID keyword on GeometryCollection
gc = GeometryCollection(
Point(5, 23), LineString((0, 0), (1.5, 1.5), (3, 3)), srid=32021
)
self.assertEqual(32021, gc.srid)
for i in range(len(gc)):
self.assertEqual(32021, gc[i].srid)
# GEOS may get the SRID from HEXEWKB
# 'POINT(5 23)' at SRID=4326 in hex form -- obtained from PostGIS
# using `SELECT GeomFromText('POINT (5 23)', 4326);`.
hex = "0101000020E610000000000000000014400000000000003740"
p1 = fromstr(hex)
self.assertEqual(4326, p1.srid)
p2 = fromstr(p1.hex)
self.assertIsNone(p2.srid)
p3 = fromstr(p1.hex, srid=-1) # -1 is intended.
self.assertEqual(-1, p3.srid)
# Testing that geometry SRID could be set to its own value
pnt_wo_srid = Point(1, 1)
pnt_wo_srid.srid = pnt_wo_srid.srid
# Input geometries that have an SRID.
self.assertEqual(GEOSGeometry(pnt.ewkt, srid=pnt.srid).srid, pnt.srid)
self.assertEqual(GEOSGeometry(pnt.ewkb, srid=pnt.srid).srid, pnt.srid)
with self.assertRaisesMessage(
ValueError, "Input geometry already has SRID: %d." % pnt.srid
):
GEOSGeometry(pnt.ewkt, srid=1)
with self.assertRaisesMessage(
ValueError, "Input geometry already has SRID: %d." % pnt.srid
):
GEOSGeometry(pnt.ewkb, srid=1)
def test_custom_srid(self):
"""Test with a null srid and a srid unknown to GDAL."""
for srid in [None, 999999]:
pnt = Point(111200, 220900, srid=srid)
self.assertTrue(
pnt.ewkt.startswith(
("SRID=%s;" % srid if srid else "") + "POINT (111200"
)
)
self.assertIsInstance(pnt.ogr, gdal.OGRGeometry)
self.assertIsNone(pnt.srs)
# Test conversion from custom to a known srid
c2w = gdal.CoordTransform(
gdal.SpatialReference(
"+proj=mill +lat_0=0 +lon_0=0 +x_0=0 +y_0=0 +R_A +datum=WGS84 "
"+units=m +no_defs"
),
gdal.SpatialReference(4326),
)
new_pnt = pnt.transform(c2w, clone=True)
self.assertEqual(new_pnt.srid, 4326)
self.assertAlmostEqual(new_pnt.x, 1, 1)
self.assertAlmostEqual(new_pnt.y, 2, 1)
def test_mutable_geometries(self):
"Testing the mutability of Polygons and Geometry Collections."
# ### Testing the mutability of Polygons ###
for p in self.geometries.polygons:
poly = fromstr(p.wkt)
# Should only be able to use __setitem__ with LinearRing geometries.
with self.assertRaises(TypeError):
poly.__setitem__(0, LineString((1, 1), (2, 2)))
# Constructing the new shell by adding 500 to every point in the old shell.
shell_tup = poly.shell.tuple
new_coords = []
for point in shell_tup:
new_coords.append((point[0] + 500.0, point[1] + 500.0))
new_shell = LinearRing(*tuple(new_coords))
# Assigning polygon's exterior ring w/the new shell
poly.exterior_ring = new_shell
str(new_shell) # new shell is still accessible
self.assertEqual(poly.exterior_ring, new_shell)
self.assertEqual(poly[0], new_shell)
# ### Testing the mutability of Geometry Collections
for tg in self.geometries.multipoints:
mp = fromstr(tg.wkt)
for i in range(len(mp)):
# Creating a random point.
pnt = mp[i]
new = Point(random.randint(21, 100), random.randint(21, 100))
# Testing the assignment
mp[i] = new
str(new) # what was used for the assignment is still accessible
self.assertEqual(mp[i], new)
self.assertEqual(mp[i].wkt, new.wkt)
self.assertNotEqual(pnt, mp[i])
# MultiPolygons involve much more memory management because each
# Polygon w/in the collection has its own rings.
for tg in self.geometries.multipolygons:
mpoly = fromstr(tg.wkt)
for i in range(len(mpoly)):
poly = mpoly[i]
old_poly = mpoly[i]
# Offsetting the each ring in the polygon by 500.
for j in range(len(poly)):
r = poly[j]
for k in range(len(r)):
r[k] = (r[k][0] + 500.0, r[k][1] + 500.0)
poly[j] = r
self.assertNotEqual(mpoly[i], poly)
# Testing the assignment
mpoly[i] = poly
str(poly) # Still accessible
self.assertEqual(mpoly[i], poly)
self.assertNotEqual(mpoly[i], old_poly)
# Extreme (!!) __setitem__ -- no longer works, have to detect
# in the first object that __setitem__ is called in the subsequent
# objects -- maybe mpoly[0, 0, 0] = (3.14, 2.71)?
# mpoly[0][0][0] = (3.14, 2.71)
# self.assertEqual((3.14, 2.71), mpoly[0][0][0])
# Doing it more slowly..
# self.assertEqual((3.14, 2.71), mpoly[0].shell[0])
# del mpoly
def test_point_list_assignment(self):
p = Point(0, 0)
p[:] = (1, 2, 3)
self.assertEqual(p, Point(1, 2, 3))
p[:] = ()
self.assertEqual(p.wkt, Point())
p[:] = (1, 2)
self.assertEqual(p.wkt, Point(1, 2))
with self.assertRaises(ValueError):
p[:] = (1,)
with self.assertRaises(ValueError):
p[:] = (1, 2, 3, 4, 5)
def test_linestring_list_assignment(self):
ls = LineString((0, 0), (1, 1))
ls[:] = ()
self.assertEqual(ls, LineString())
ls[:] = ((0, 0), (1, 1), (2, 2))
self.assertEqual(ls, LineString((0, 0), (1, 1), (2, 2)))
with self.assertRaises(ValueError):
ls[:] = (1,)
def test_linearring_list_assignment(self):
ls = LinearRing((0, 0), (0, 1), (1, 1), (0, 0))
ls[:] = ()
self.assertEqual(ls, LinearRing())
ls[:] = ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))
self.assertEqual(ls, LinearRing((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
with self.assertRaises(ValueError):
ls[:] = ((0, 0), (1, 1), (2, 2))
def test_polygon_list_assignment(self):
pol = Polygon()
pol[:] = (((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)),)
self.assertEqual(
pol,
Polygon(
((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)),
),
)
pol[:] = ()
self.assertEqual(pol, Polygon())
def test_geometry_collection_list_assignment(self):
p = Point()
gc = GeometryCollection()
gc[:] = [p]
self.assertEqual(gc, GeometryCollection(p))
gc[:] = ()
self.assertEqual(gc, GeometryCollection())
def test_threed(self):
"Testing three-dimensional geometries."
# Testing a 3D Point
pnt = Point(2, 3, 8)
self.assertEqual((2.0, 3.0, 8.0), pnt.coords)
with self.assertRaises(TypeError):
pnt.tuple = (1.0, 2.0)
pnt.coords = (1.0, 2.0, 3.0)
self.assertEqual((1.0, 2.0, 3.0), pnt.coords)
# Testing a 3D LineString
ls = LineString((2.0, 3.0, 8.0), (50.0, 250.0, -117.0))
self.assertEqual(((2.0, 3.0, 8.0), (50.0, 250.0, -117.0)), ls.tuple)
with self.assertRaises(TypeError):
ls.__setitem__(0, (1.0, 2.0))
ls[0] = (1.0, 2.0, 3.0)
self.assertEqual((1.0, 2.0, 3.0), ls[0])
def test_distance(self):
"Testing the distance() function."
# Distance to self should be 0.
pnt = Point(0, 0)
self.assertEqual(0.0, pnt.distance(Point(0, 0)))
# Distance should be 1
self.assertEqual(1.0, pnt.distance(Point(0, 1)))
# Distance should be ~ sqrt(2)
self.assertAlmostEqual(1.41421356237, pnt.distance(Point(1, 1)), 11)
# Distances are from the closest vertex in each geometry --
# should be 3 (distance from (2, 2) to (5, 2)).
ls1 = LineString((0, 0), (1, 1), (2, 2))
ls2 = LineString((5, 2), (6, 1), (7, 0))
self.assertEqual(3, ls1.distance(ls2))
def test_length(self):
"Testing the length property."
# Points have 0 length.
pnt = Point(0, 0)
self.assertEqual(0.0, pnt.length)
# Should be ~ sqrt(2)
ls = LineString((0, 0), (1, 1))
self.assertAlmostEqual(1.41421356237, ls.length, 11)
# Should be circumference of Polygon
poly = Polygon(LinearRing((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
self.assertEqual(4.0, poly.length)
# Should be sum of each element's length in collection.
mpoly = MultiPolygon(poly.clone(), poly)
self.assertEqual(8.0, mpoly.length)
def test_emptyCollections(self):
"Testing empty geometries and collections."
geoms = [
GeometryCollection([]),
fromstr("GEOMETRYCOLLECTION EMPTY"),
GeometryCollection(),
fromstr("POINT EMPTY"),
Point(),
fromstr("LINESTRING EMPTY"),
LineString(),
fromstr("POLYGON EMPTY"),
Polygon(),
fromstr("MULTILINESTRING EMPTY"),
MultiLineString(),
fromstr("MULTIPOLYGON EMPTY"),
MultiPolygon(()),
MultiPolygon(),
]
if numpy:
geoms.append(LineString(numpy.array([])))
for g in geoms:
self.assertIs(g.empty, True)
# Testing len() and num_geom.
if isinstance(g, Polygon):
self.assertEqual(1, len(g)) # Has one empty linear ring
self.assertEqual(1, g.num_geom)
self.assertEqual(0, len(g[0]))
elif isinstance(g, (Point, LineString)):
self.assertEqual(1, g.num_geom)
self.assertEqual(0, len(g))
else:
self.assertEqual(0, g.num_geom)
self.assertEqual(0, len(g))
# Testing __getitem__ (doesn't work on Point or Polygon)
if isinstance(g, Point):
# IndexError is not raised in GEOS 3.8.0.
if geos_version_tuple() != (3, 8, 0):
with self.assertRaises(IndexError):
g.x
elif isinstance(g, Polygon):
lr = g.shell
self.assertEqual("LINEARRING EMPTY", lr.wkt)
self.assertEqual(0, len(lr))
self.assertIs(lr.empty, True)
with self.assertRaises(IndexError):
lr.__getitem__(0)
else:
with self.assertRaises(IndexError):
g.__getitem__(0)
def test_collection_dims(self):
gc = GeometryCollection([])
self.assertEqual(gc.dims, -1)
gc = GeometryCollection(Point(0, 0))
self.assertEqual(gc.dims, 0)
gc = GeometryCollection(LineString((0, 0), (1, 1)), Point(0, 0))
self.assertEqual(gc.dims, 1)
gc = GeometryCollection(
LineString((0, 0), (1, 1)),
Polygon(((0, 0), (0, 1), (1, 1), (0, 0))),
Point(0, 0),
)
self.assertEqual(gc.dims, 2)
def test_collections_of_collections(self):
"Testing GeometryCollection handling of other collections."
# Creating a GeometryCollection WKT string composed of other
# collections and polygons.
coll = [mp.wkt for mp in self.geometries.multipolygons if mp.valid]
coll.extend(mls.wkt for mls in self.geometries.multilinestrings)
coll.extend(p.wkt for p in self.geometries.polygons)
coll.extend(mp.wkt for mp in self.geometries.multipoints)
gc_wkt = "GEOMETRYCOLLECTION(%s)" % ",".join(coll)
# Should construct ok from WKT
gc1 = GEOSGeometry(gc_wkt)
# Should also construct ok from individual geometry arguments.
gc2 = GeometryCollection(*tuple(g for g in gc1))
# And, they should be equal.
self.assertEqual(gc1, gc2)
def test_gdal(self):
"Testing `ogr` and `srs` properties."
g1 = fromstr("POINT(5 23)")
self.assertIsInstance(g1.ogr, gdal.OGRGeometry)
self.assertIsNone(g1.srs)
g1_3d = fromstr("POINT(5 23 8)")
self.assertIsInstance(g1_3d.ogr, gdal.OGRGeometry)
self.assertEqual(g1_3d.ogr.z, 8)
g2 = fromstr("LINESTRING(0 0, 5 5, 23 23)", srid=4326)
self.assertIsInstance(g2.ogr, gdal.OGRGeometry)
self.assertIsInstance(g2.srs, gdal.SpatialReference)
self.assertEqual(g2.hex, g2.ogr.hex)
self.assertEqual("WGS 84", g2.srs.name)
def test_copy(self):
"Testing use with the Python `copy` module."
import copy
poly = GEOSGeometry(
"POLYGON((0 0, 0 23, 23 23, 23 0, 0 0), (5 5, 5 10, 10 10, 10 5, 5 5))"
)
cpy1 = copy.copy(poly)
cpy2 = copy.deepcopy(poly)
self.assertNotEqual(poly._ptr, cpy1._ptr)
self.assertNotEqual(poly._ptr, cpy2._ptr)
def test_transform(self):
"Testing `transform` method."
orig = GEOSGeometry("POINT (-104.609 38.255)", 4326)
trans = GEOSGeometry("POINT (992385.4472045 481455.4944650)", 2774)
# Using a srid, a SpatialReference object, and a CoordTransform object
# for transformations.
t1, t2, t3 = orig.clone(), orig.clone(), orig.clone()
t1.transform(trans.srid)
t2.transform(gdal.SpatialReference("EPSG:2774"))
ct = gdal.CoordTransform(
gdal.SpatialReference("WGS84"), gdal.SpatialReference(2774)
)
t3.transform(ct)
# Testing use of the `clone` keyword.
k1 = orig.clone()
k2 = k1.transform(trans.srid, clone=True)
self.assertEqual(k1, orig)
self.assertNotEqual(k1, k2)
# Different PROJ versions use different transformations, all are
# correct as having a 1 meter accuracy.
prec = -1
for p in (t1, t2, t3, k2):
self.assertAlmostEqual(trans.x, p.x, prec)
self.assertAlmostEqual(trans.y, p.y, prec)
def test_transform_3d(self):
p3d = GEOSGeometry("POINT (5 23 100)", 4326)
p3d.transform(2774)
self.assertAlmostEqual(p3d.z, 100, 3)
def test_transform_noop(self):
"""Testing `transform` method (SRID match)"""
# transform() should no-op if source & dest SRIDs match,
# regardless of whether GDAL is available.
g = GEOSGeometry("POINT (-104.609 38.255)", 4326)
gt = g.tuple
g.transform(4326)
self.assertEqual(g.tuple, gt)
self.assertEqual(g.srid, 4326)
g = GEOSGeometry("POINT (-104.609 38.255)", 4326)
g1 = g.transform(4326, clone=True)
self.assertEqual(g1.tuple, g.tuple)
self.assertEqual(g1.srid, 4326)
self.assertIsNot(g1, g, "Clone didn't happen")
def test_transform_nosrid(self):
"""Testing `transform` method (no SRID or negative SRID)"""
g = GEOSGeometry("POINT (-104.609 38.255)", srid=None)
with self.assertRaises(GEOSException):
g.transform(2774)
g = GEOSGeometry("POINT (-104.609 38.255)", srid=None)
with self.assertRaises(GEOSException):
g.transform(2774, clone=True)
g = GEOSGeometry("POINT (-104.609 38.255)", srid=-1)
with self.assertRaises(GEOSException):
g.transform(2774)
g = GEOSGeometry("POINT (-104.609 38.255)", srid=-1)
with self.assertRaises(GEOSException):
g.transform(2774, clone=True)
def test_extent(self):
"Testing `extent` method."
# The xmin, ymin, xmax, ymax of the MultiPoint should be returned.
mp = MultiPoint(Point(5, 23), Point(0, 0), Point(10, 50))
self.assertEqual((0.0, 0.0, 10.0, 50.0), mp.extent)
pnt = Point(5.23, 17.8)
# Extent of points is just the point itself repeated.
self.assertEqual((5.23, 17.8, 5.23, 17.8), pnt.extent)
# Testing on the 'real world' Polygon.
poly = fromstr(self.geometries.polygons[3].wkt)
ring = poly.shell
x, y = ring.x, ring.y
xmin, ymin = min(x), min(y)
xmax, ymax = max(x), max(y)
self.assertEqual((xmin, ymin, xmax, ymax), poly.extent)
def test_pickle(self):
"Testing pickling and unpickling support."
# Creating a list of test geometries for pickling,
# and setting the SRID on some of them.
def get_geoms(lst, srid=None):
return [GEOSGeometry(tg.wkt, srid) for tg in lst]
tgeoms = get_geoms(self.geometries.points)
tgeoms.extend(get_geoms(self.geometries.multilinestrings, 4326))
tgeoms.extend(get_geoms(self.geometries.polygons, 3084))
tgeoms.extend(get_geoms(self.geometries.multipolygons, 3857))
tgeoms.append(Point(srid=4326))
tgeoms.append(Point())
for geom in tgeoms:
s1 = pickle.dumps(geom)
g1 = pickle.loads(s1)
self.assertEqual(geom, g1)
self.assertEqual(geom.srid, g1.srid)
def test_prepared(self):
"Testing PreparedGeometry support."
# Creating a simple multipolygon and getting a prepared version.
mpoly = GEOSGeometry(
"MULTIPOLYGON(((0 0,0 5,5 5,5 0,0 0)),((5 5,5 10,10 10,10 5,5 5)))"
)
prep = mpoly.prepared
# A set of test points.
pnts = [Point(5, 5), Point(7.5, 7.5), Point(2.5, 7.5)]
for pnt in pnts:
# Results should be the same (but faster)
self.assertEqual(mpoly.contains(pnt), prep.contains(pnt))
self.assertEqual(mpoly.intersects(pnt), prep.intersects(pnt))
self.assertEqual(mpoly.covers(pnt), prep.covers(pnt))
self.assertTrue(prep.crosses(fromstr("LINESTRING(1 1, 15 15)")))
self.assertTrue(prep.disjoint(Point(-5, -5)))
poly = Polygon(((-1, -1), (1, 1), (1, 0), (-1, -1)))
self.assertTrue(prep.overlaps(poly))
poly = Polygon(((-5, 0), (-5, 5), (0, 5), (-5, 0)))
self.assertTrue(prep.touches(poly))
poly = Polygon(((-1, -1), (-1, 11), (11, 11), (11, -1), (-1, -1)))
self.assertTrue(prep.within(poly))
# Original geometry deletion should not crash the prepared one (#21662)
del mpoly
self.assertTrue(prep.covers(Point(5, 5)))
def test_line_merge(self):
"Testing line merge support"
ref_geoms = (
fromstr("LINESTRING(1 1, 1 1, 3 3)"),
fromstr("MULTILINESTRING((1 1, 3 3), (3 3, 4 2))"),
)
ref_merged = (
fromstr("LINESTRING(1 1, 3 3)"),
fromstr("LINESTRING (1 1, 3 3, 4 2)"),
)
for geom, merged in zip(ref_geoms, ref_merged):
self.assertEqual(merged, geom.merged)
def test_valid_reason(self):
"Testing IsValidReason support"
g = GEOSGeometry("POINT(0 0)")
self.assertTrue(g.valid)
self.assertIsInstance(g.valid_reason, str)
self.assertEqual(g.valid_reason, "Valid Geometry")
g = GEOSGeometry("LINESTRING(0 0, 0 0)")
self.assertFalse(g.valid)
self.assertIsInstance(g.valid_reason, str)
self.assertTrue(
g.valid_reason.startswith("Too few points in geometry component")
)
def test_linearref(self):
"Testing linear referencing"
ls = fromstr("LINESTRING(0 0, 0 10, 10 10, 10 0)")
mls = fromstr("MULTILINESTRING((0 0, 0 10), (10 0, 10 10))")
self.assertEqual(ls.project(Point(0, 20)), 10.0)
self.assertEqual(ls.project(Point(7, 6)), 24)
self.assertEqual(ls.project_normalized(Point(0, 20)), 1.0 / 3)
self.assertEqual(ls.interpolate(10), Point(0, 10))
self.assertEqual(ls.interpolate(24), Point(10, 6))
self.assertEqual(ls.interpolate_normalized(1.0 / 3), Point(0, 10))
self.assertEqual(mls.project(Point(0, 20)), 10)
self.assertEqual(mls.project(Point(7, 6)), 16)
self.assertEqual(mls.interpolate(9), Point(0, 9))
self.assertEqual(mls.interpolate(17), Point(10, 7))
def test_deconstructible(self):
"""
Geometry classes should be deconstructible.
"""
point = Point(4.337844, 50.827537, srid=4326)
path, args, kwargs = point.deconstruct()
self.assertEqual(path, "django.contrib.gis.geos.point.Point")
self.assertEqual(args, (4.337844, 50.827537))
self.assertEqual(kwargs, {"srid": 4326})
ls = LineString(((0, 0), (1, 1)))
path, args, kwargs = ls.deconstruct()
self.assertEqual(path, "django.contrib.gis.geos.linestring.LineString")
self.assertEqual(args, (((0, 0), (1, 1)),))
self.assertEqual(kwargs, {})
ls2 = LineString([Point(0, 0), Point(1, 1)], srid=4326)
path, args, kwargs = ls2.deconstruct()
self.assertEqual(path, "django.contrib.gis.geos.linestring.LineString")
self.assertEqual(args, ([Point(0, 0), Point(1, 1)],))
self.assertEqual(kwargs, {"srid": 4326})
ext_coords = ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))
int_coords = ((0.4, 0.4), (0.4, 0.6), (0.6, 0.6), (0.6, 0.4), (0.4, 0.4))
poly = Polygon(ext_coords, int_coords)
path, args, kwargs = poly.deconstruct()
self.assertEqual(path, "django.contrib.gis.geos.polygon.Polygon")
self.assertEqual(args, (ext_coords, int_coords))
self.assertEqual(kwargs, {})
lr = LinearRing((0, 0), (0, 1), (1, 1), (0, 0))
path, args, kwargs = lr.deconstruct()
self.assertEqual(path, "django.contrib.gis.geos.linestring.LinearRing")
self.assertEqual(args, ((0, 0), (0, 1), (1, 1), (0, 0)))
self.assertEqual(kwargs, {})
mp = MultiPoint(Point(0, 0), Point(1, 1))
path, args, kwargs = mp.deconstruct()
self.assertEqual(path, "django.contrib.gis.geos.collections.MultiPoint")
self.assertEqual(args, (Point(0, 0), Point(1, 1)))
self.assertEqual(kwargs, {})
ls1 = LineString((0, 0), (1, 1))
ls2 = LineString((2, 2), (3, 3))
mls = MultiLineString(ls1, ls2)
path, args, kwargs = mls.deconstruct()
self.assertEqual(path, "django.contrib.gis.geos.collections.MultiLineString")
self.assertEqual(args, (ls1, ls2))
self.assertEqual(kwargs, {})
p1 = Polygon(((0, 0), (0, 1), (1, 1), (0, 0)))
p2 = Polygon(((1, 1), (1, 2), (2, 2), (1, 1)))
mp = MultiPolygon(p1, p2)
path, args, kwargs = mp.deconstruct()
self.assertEqual(path, "django.contrib.gis.geos.collections.MultiPolygon")
self.assertEqual(args, (p1, p2))
self.assertEqual(kwargs, {})
poly = Polygon(((0, 0), (0, 1), (1, 1), (0, 0)))
gc = GeometryCollection(Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)), poly)
path, args, kwargs = gc.deconstruct()
self.assertEqual(path, "django.contrib.gis.geos.collections.GeometryCollection")
self.assertEqual(
args, (Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)), poly)
)
self.assertEqual(kwargs, {})
def test_subclassing(self):
"""
GEOSGeometry subclass may itself be subclassed without being forced-cast
to the parent class during `__init__`.
"""
class ExtendedPolygon(Polygon):
def __init__(self, *args, data=0, **kwargs):
super().__init__(*args, **kwargs)
self._data = data
def __str__(self):
return "EXT_POLYGON - data: %d - %s" % (self._data, self.wkt)
ext_poly = ExtendedPolygon(((0, 0), (0, 1), (1, 1), (0, 0)), data=3)
self.assertEqual(type(ext_poly), ExtendedPolygon)
# ExtendedPolygon.__str__ should be called (instead of Polygon.__str__).
self.assertEqual(
str(ext_poly), "EXT_POLYGON - data: 3 - POLYGON ((0 0, 0 1, 1 1, 0 0))"
)
self.assertJSONEqual(
ext_poly.json,
'{"coordinates": [[[0, 0], [0, 1], [1, 1], [0, 0]]], "type": "Polygon"}',
)
def test_geos_version_tuple(self):
versions = (
(b"3.0.0rc4-CAPI-1.3.3", (3, 0, 0)),
(b"3.0.0-CAPI-1.4.1", (3, 0, 0)),
(b"3.4.0dev-CAPI-1.8.0", (3, 4, 0)),
(b"3.4.0dev-CAPI-1.8.0 r0", (3, 4, 0)),
(b"3.6.2-CAPI-1.10.2 4d2925d6", (3, 6, 2)),
)
for version_string, version_tuple in versions:
with self.subTest(version_string=version_string):
with mock.patch(
"django.contrib.gis.geos.libgeos.geos_version",
lambda: version_string,
):
self.assertEqual(geos_version_tuple(), version_tuple)
def test_from_gml(self):
self.assertEqual(
GEOSGeometry("POINT(0 0)"),
GEOSGeometry.from_gml(
'<gml:Point gml:id="p21" '
'srsName="http://www.opengis.net/def/crs/EPSG/0/4326">'
' <gml:pos srsDimension="2">0 0</gml:pos>'
"</gml:Point>"
),
)
def test_from_ewkt(self):
self.assertEqual(
GEOSGeometry.from_ewkt("SRID=1;POINT(1 1)"), Point(1, 1, srid=1)
)
self.assertEqual(GEOSGeometry.from_ewkt("POINT(1 1)"), Point(1, 1))
def test_from_ewkt_empty_string(self):
msg = "Expected WKT but got an empty string."
with self.assertRaisesMessage(ValueError, msg):
GEOSGeometry.from_ewkt("")
with self.assertRaisesMessage(ValueError, msg):
GEOSGeometry.from_ewkt("SRID=1;")
def test_from_ewkt_invalid_srid(self):
msg = "EWKT has invalid SRID part."
with self.assertRaisesMessage(ValueError, msg):
GEOSGeometry.from_ewkt("SRUD=1;POINT(1 1)")
with self.assertRaisesMessage(ValueError, msg):
GEOSGeometry.from_ewkt("SRID=WGS84;POINT(1 1)")
def test_fromstr_scientific_wkt(self):
self.assertEqual(GEOSGeometry("POINT(1.0e-1 1.0e+1)"), Point(0.1, 10))
def test_normalize(self):
multipoint = MultiPoint(Point(0, 0), Point(2, 2), Point(1, 1))
normalized = MultiPoint(Point(2, 2), Point(1, 1), Point(0, 0))
# Geometry is normalized in-place and nothing is returned.
multipoint_1 = multipoint.clone()
self.assertIsNone(multipoint_1.normalize())
self.assertEqual(multipoint_1, normalized)
# If the `clone` keyword is set, then the geometry is not modified and
# a normalized clone of the geometry is returned instead.
multipoint_2 = multipoint.normalize(clone=True)
self.assertEqual(multipoint_2, normalized)
self.assertNotEqual(multipoint, normalized)
def test_make_valid(self):
poly = GEOSGeometry("POLYGON((0 0, 0 23, 23 0, 23 23, 0 0))")
self.assertIs(poly.valid, False)
valid_poly = poly.make_valid()
self.assertIs(valid_poly.valid, True)
self.assertNotEqual(valid_poly, poly)
valid_poly2 = valid_poly.make_valid()
self.assertIs(valid_poly2.valid, True)
self.assertEqual(valid_poly, valid_poly2)
def test_empty_point(self):
p = Point(srid=4326)
self.assertEqual(p.ogr.ewkt, p.ewkt)
self.assertEqual(p.transform(2774, clone=True), Point(srid=2774))
p.transform(2774)
self.assertEqual(p, Point(srid=2774))
def test_linestring_iter(self):
ls = LineString((0, 0), (1, 1))
it = iter(ls)
# Step into CoordSeq iterator.
next(it)
ls[:] = []
with self.assertRaises(IndexError):
next(it)