1
0
mirror of https://github.com/django/django.git synced 2025-01-25 17:49:52 +00:00
django/docs/ref/request-response.txt
Luke Plant 45e55b9143 Fixed #14614 - filtering of sensitive information in 500 error reports.
This adds a flexible mechanism for filtering what request/traceback
information is shown in 500 error emails and logs. It also applies
screening to some views known to be sensitive e.g. views that handle
passwords.

Thanks to oaylanc for the report and many thanks to Julien Phalip for the
patch and the rest of the work on this.

git-svn-id: http://code.djangoproject.com/svn/django/trunk@16339 bcc190cf-cafb-0310-a4f2-bffc1f526a37
2011-06-08 22:18:46 +00:00

749 lines
26 KiB
Plaintext

============================
Request and response objects
============================
.. module:: django.http
:synopsis: Classes dealing with HTTP requests and responses.
Quick overview
==============
Django uses request and response objects to pass state through the system.
When a page is requested, Django creates an :class:`HttpRequest` object that
contains metadata about the request. Then Django loads the appropriate view,
passing the :class:`HttpRequest` as the first argument to the view function.
Each view is responsible for returning an :class:`HttpResponse` object.
This document explains the APIs for :class:`HttpRequest` and
:class:`HttpResponse` objects.
HttpRequest objects
===================
.. class:: HttpRequest
.. _httprequest-attributes:
Attributes
----------
All attributes except ``session`` should be considered read-only.
.. attribute:: HttpRequest.path
A string representing the full path to the requested page, not including
the domain.
Example: ``"/music/bands/the_beatles/"``
.. attribute:: HttpRequest.path_info
Under some Web server configurations, the portion of the URL after the host
name is split up into a script prefix portion and a path info portion
(this happens, for example, when using the ``django.root`` option
with the :doc:`modpython handler from Apache </howto/deployment/modpython>`).
The ``path_info`` attribute always contains the path info portion of the
path, no matter what Web server is being used. Using this instead of
attr:`~HttpRequest.path` can make your code much easier to move between test
and deployment servers.
For example, if the ``django.root`` for your application is set to
``"/minfo"``, then ``path`` might be ``"/minfo/music/bands/the_beatles/"``
and ``path_info`` would be ``"/music/bands/the_beatles/"``.
.. attribute:: HttpRequest.method
A string representing the HTTP method used in the request. This is
guaranteed to be uppercase. Example::
if request.method == 'GET':
do_something()
elif request.method == 'POST':
do_something_else()
.. attribute:: HttpRequest.encoding
A string representing the current encoding used to decode form submission
data (or ``None``, which means the :setting:`DEFAULT_CHARSET` setting is
used). You can write to this attribute to change the encoding used when
accessing the form data. Any subsequent attribute accesses (such as reading
from ``GET`` or ``POST``) will use the new ``encoding`` value. Useful if
you know the form data is not in the :setting:`DEFAULT_CHARSET` encoding.
.. attribute:: HttpRequest.GET
A dictionary-like object containing all given HTTP GET parameters. See the
:class:`QueryDict` documentation below.
.. attribute:: HttpRequest.POST
A dictionary-like object containing all given HTTP POST parameters. See the
:class:`QueryDict` documentation below.
It's possible that a request can come in via POST with an empty ``POST``
dictionary -- if, say, a form is requested via the POST HTTP method but
does not include form data. Therefore, you shouldn't use ``if request.POST``
to check for use of the POST method; instead, use ``if request.method ==
"POST"`` (see above).
Note: ``POST`` does *not* include file-upload information. See ``FILES``.
.. attribute:: HttpRequest.REQUEST
For convenience, a dictionary-like object that searches ``POST`` first,
then ``GET``. Inspired by PHP's ``$_REQUEST``.
For example, if ``GET = {"name": "john"}`` and ``POST = {"age": '34'}``,
``REQUEST["name"]`` would be ``"john"``, and ``REQUEST["age"]`` would be
``"34"``.
It's strongly suggested that you use ``GET`` and ``POST`` instead of
``REQUEST``, because the former are more explicit.
.. attribute:: HttpRequest.COOKIES
A standard Python dictionary containing all cookies. Keys and values are
strings.
.. attribute:: HttpRequest.FILES
A dictionary-like object containing all uploaded files. Each key in
``FILES`` is the ``name`` from the ``<input type="file" name="" />``. Each
value in ``FILES`` is an :class:`UploadedFile` as described below.
See :doc:`/topics/files` for more information.
Note that ``FILES`` will only contain data if the request method was POST
and the ``<form>`` that posted to the request had
``enctype="multipart/form-data"``. Otherwise, ``FILES`` will be a blank
dictionary-like object.
.. attribute:: HttpRequest.META
A standard Python dictionary containing all available HTTP headers.
Available headers depend on the client and server, but here are some
examples:
* ``CONTENT_LENGTH``
* ``CONTENT_TYPE``
* ``HTTP_ACCEPT_ENCODING``
* ``HTTP_ACCEPT_LANGUAGE``
* ``HTTP_HOST`` -- The HTTP Host header sent by the client.
* ``HTTP_REFERER`` -- The referring page, if any.
* ``HTTP_USER_AGENT`` -- The client's user-agent string.
* ``QUERY_STRING`` -- The query string, as a single (unparsed) string.
* ``REMOTE_ADDR`` -- The IP address of the client.
* ``REMOTE_HOST`` -- The hostname of the client.
* ``REMOTE_USER`` -- The user authenticated by the Web server, if any.
* ``REQUEST_METHOD`` -- A string such as ``"GET"`` or ``"POST"``.
* ``SERVER_NAME`` -- The hostname of the server.
* ``SERVER_PORT`` -- The port of the server.
With the exception of ``CONTENT_LENGTH`` and ``CONTENT_TYPE``, as given
above, any HTTP headers in the request are converted to ``META`` keys by
converting all characters to uppercase, replacing any hyphens with
underscores and adding an ``HTTP_`` prefix to the name. So, for example, a
header called ``X-Bender`` would be mapped to the ``META`` key
``HTTP_X_BENDER``.
.. attribute:: HttpRequest.user
A ``django.contrib.auth.models.User`` object representing the currently
logged-in user. If the user isn't currently logged in, ``user`` will be set
to an instance of ``django.contrib.auth.models.AnonymousUser``. You
can tell them apart with ``is_authenticated()``, like so::
if request.user.is_authenticated():
# Do something for logged-in users.
else:
# Do something for anonymous users.
``user`` is only available if your Django installation has the
``AuthenticationMiddleware`` activated. For more, see
:doc:`/topics/auth`.
.. attribute:: HttpRequest.session
A readable-and-writable, dictionary-like object that represents the current
session. This is only available if your Django installation has session
support activated. See the :doc:`session documentation
</topics/http/sessions>` for full details.
.. attribute:: HttpRequest.raw_post_data
The raw HTTP POST data as a byte string. This is useful for processing
data in different formats than of conventional HTML forms: binary images,
XML payload etc. For processing form data use ``HttpRequest.POST``.
.. versionadded:: 1.3
You can also read from an HttpRequest using file-like interface. See
:meth:`HttpRequest.read()`.
.. attribute:: HttpRequest.urlconf
Not defined by Django itself, but will be read if other code (e.g., a custom
middleware class) sets it. When present, this will be used as the root
URLconf for the current request, overriding the :setting:`ROOT_URLCONF`
setting. See :ref:`how-django-processes-a-request` for details.
Methods
-------
.. method:: HttpRequest.get_host()
Returns the originating host of the request using information from the
``HTTP_X_FORWARDED_HOST`` and ``HTTP_HOST`` headers (in that order). If
they don't provide a value, the method uses a combination of
``SERVER_NAME`` and ``SERVER_PORT`` as detailed in `PEP 333`_.
.. _PEP 333: http://www.python.org/dev/peps/pep-0333/
Example: ``"127.0.0.1:8000"``
.. note:: The :meth:`~HttpRequest.get_host()` method fails when the host is
behind multiple proxies. One solution is to use middleware to rewrite
the proxy headers, as in the following example::
class MultipleProxyMiddleware(object):
FORWARDED_FOR_FIELDS = [
'HTTP_X_FORWARDED_FOR',
'HTTP_X_FORWARDED_HOST',
'HTTP_X_FORWARDED_SERVER',
]
def process_request(self, request):
"""
Rewrites the proxy headers so that only the most
recent proxy is used.
"""
for field in self.FORWARDED_FOR_FIELDS:
if field in request.META:
if ',' in request.META[field]:
parts = request.META[field].split(',')
request.META[field] = parts[-1].strip()
.. method:: HttpRequest.get_full_path()
Returns the ``path``, plus an appended query string, if applicable.
Example: ``"/music/bands/the_beatles/?print=true"``
.. method:: HttpRequest.build_absolute_uri(location)
Returns the absolute URI form of ``location``. If no location is provided,
the location will be set to ``request.get_full_path()``.
If the location is already an absolute URI, it will not be altered.
Otherwise the absolute URI is built using the server variables available in
this request.
Example: ``"http://example.com/music/bands/the_beatles/?print=true"``
.. method:: HttpRequest.get_signed_cookie(key, default=RAISE_ERROR, salt='', max_age=None)
.. versionadded:: 1.4
Returns a cookie value for a signed cookie, or raises a
:class:`~django.core.signing.BadSignature` exception if the signature is
no longer valid. If you provide the ``default`` argument the exception
will be suppressed and that default value will be returned instead.
The optional ``salt`` argument can be used to provide extra protection
against brute force attacks on your secret key. If supplied, the
``max_age`` argument will be checked against the signed timestamp
attached to the cookie value to ensure the cookie is not older than
``max_age`` seconds.
For example::
>>> request.get_signed_cookie('name')
'Tony'
>>> request.get_signed_cookie('name', salt='name-salt')
'Tony' # assuming cookie was set using the same salt
>>> request.get_signed_cookie('non-existing-cookie')
...
KeyError: 'non-existing-cookie'
>>> request.get_signed_cookie('non-existing-cookie', False)
False
>>> request.get_signed_cookie('cookie-that-was-tampered-with')
...
BadSignature: ...
>>> request.get_signed_cookie('name', max_age=60)
...
SignatureExpired: Signature age 1677.3839159 > 60 seconds
>>> request.get_signed_cookie('name', False, max_age=60)
False
See :doc:`cryptographic signing </topics/signing>` for more information.
.. method:: HttpRequest.is_secure()
Returns ``True`` if the request is secure; that is, if it was made with
HTTPS.
.. method:: HttpRequest.is_ajax()
Returns ``True`` if the request was made via an ``XMLHttpRequest``, by
checking the ``HTTP_X_REQUESTED_WITH`` header for the string
``'XMLHttpRequest'``. Most modern JavaScript libraries send this header.
If you write your own XMLHttpRequest call (on the browser side), you'll
have to set this header manually if you want ``is_ajax()`` to work.
.. method:: HttpRequest.read(size=None)
.. method:: HttpRequest.readline()
.. method:: HttpRequest.readlines()
.. method:: HttpRequest.xreadlines()
.. method:: HttpRequest.__iter__()
.. versionadded:: 1.3
Methods implementing a file-like interface for reading from an
HttpRequest instance. This makes it possible to consume an incoming
request in a streaming fashion. A common use-case would be to process a
big XML payload with iterative parser without constructing a whole
XML tree in memory.
Given this standard interface, an HttpRequest instance can be
passed directly to an XML parser such as ElementTree::
import xml.etree.ElementTree as ET
for element in ET.iterparse(request):
process(element)
UploadedFile objects
====================
.. class:: UploadedFile
Attributes
----------
.. attribute:: UploadedFile.name
The name of the uploaded file.
.. attribute:: UploadedFile.size
The size, in bytes, of the uploaded file.
Methods
----------
.. method:: UploadedFile.chunks(chunk_size=None)
Returns a generator that yields sequential chunks of data.
.. method:: UploadedFile.read(num_bytes=None)
Read a number of bytes from the file.
QueryDict objects
=================
.. class:: QueryDict
In an :class:`HttpRequest` object, the ``GET`` and ``POST`` attributes are instances
of ``django.http.QueryDict``. :class:`QueryDict` is a dictionary-like
class customized to deal with multiple values for the same key. This is
necessary because some HTML form elements, notably
``<select multiple="multiple">``, pass multiple values for the same key.
``QueryDict`` instances are immutable, unless you create a ``copy()`` of them.
That means you can't change attributes of ``request.POST`` and ``request.GET``
directly.
Methods
-------
:class:`QueryDict` implements all the standard dictionary methods, because it's
a subclass of dictionary. Exceptions are outlined here:
.. method:: QueryDict.__getitem__(key)
Returns the value for the given key. If the key has more than one value,
``__getitem__()`` returns the last value. Raises
``django.utils.datastructures.MultiValueDictKeyError`` if the key does not
exist. (This is a subclass of Python's standard ``KeyError``, so you can
stick to catching ``KeyError``.)
.. method:: QueryDict.__setitem__(key, value)
Sets the given key to ``[value]`` (a Python list whose single element is
``value``). Note that this, as other dictionary functions that have side
effects, can only be called on a mutable ``QueryDict`` (one that was created
via ``copy()``).
.. method:: QueryDict.__contains__(key)
Returns ``True`` if the given key is set. This lets you do, e.g., ``if "foo"
in request.GET``.
.. method:: QueryDict.get(key, default)
Uses the same logic as ``__getitem__()`` above, with a hook for returning a
default value if the key doesn't exist.
.. method:: QueryDict.setdefault(key, default)
Just like the standard dictionary ``setdefault()`` method, except it uses
``__setitem__()`` internally.
.. method:: QueryDict.update(other_dict)
Takes either a ``QueryDict`` or standard dictionary. Just like the standard
dictionary ``update()`` method, except it *appends* to the current
dictionary items rather than replacing them. For example::
>>> q = QueryDict('a=1')
>>> q = q.copy() # to make it mutable
>>> q.update({'a': '2'})
>>> q.getlist('a')
[u'1', u'2']
>>> q['a'] # returns the last
[u'2']
.. method:: QueryDict.items()
Just like the standard dictionary ``items()`` method, except this uses the
same last-value logic as ``__getitem__()``. For example::
>>> q = QueryDict('a=1&a=2&a=3')
>>> q.items()
[(u'a', u'3')]
.. method:: QueryDict.iteritems()
Just like the standard dictionary ``iteritems()`` method. Like
:meth:`QueryDict.items()` this uses the same last-value logic as
:meth:`QueryDict.__getitem__()`.
.. method:: QueryDict.iterlists()
Like :meth:`QueryDict.iteritems()` except it includes all values, as a list,
for each member of the dictionary.
.. method:: QueryDict.values()
Just like the standard dictionary ``values()`` method, except this uses the
same last-value logic as ``__getitem__()``. For example::
>>> q = QueryDict('a=1&a=2&a=3')
>>> q.values()
[u'3']
.. method:: QueryDict.itervalues()
Just like :meth:`QueryDict.values()`, except an iterator.
In addition, ``QueryDict`` has the following methods:
.. method:: QueryDict.copy()
Returns a copy of the object, using ``copy.deepcopy()`` from the Python
standard library. The copy will be mutable -- that is, you can change its
values.
.. method:: QueryDict.getlist(key, default)
Returns the data with the requested key, as a Python list. Returns an
empty list if the key doesn't exist and no default value was provided.
It's guaranteed to return a list of some sort unless the default value
was no list.
.. versionchanged:: 1.4
The ``default`` parameter was added.
.. method:: QueryDict.setlist(key, list_)
Sets the given key to ``list_`` (unlike ``__setitem__()``).
.. method:: QueryDict.appendlist(key, item)
Appends an item to the internal list associated with key.
.. method:: QueryDict.setlistdefault(key, default_list)
Just like ``setdefault``, except it takes a list of values instead of a
single value.
.. method:: QueryDict.lists()
Like :meth:`items()`, except it includes all values, as a list, for each
member of the dictionary. For example::
>>> q = QueryDict('a=1&a=2&a=3')
>>> q.lists()
[(u'a', [u'1', u'2', u'3'])]
.. method:: QueryDict.urlencode([safe])
Returns a string of the data in query-string format. Example::
>>> q = QueryDict('a=2&b=3&b=5')
>>> q.urlencode()
'a=2&b=3&b=5'
.. versionchanged:: 1.3
The ``safe`` parameter was added.
Optionally, urlencode can be passed characters which
do not require encoding. For example::
>>> q = QueryDict('', mutable=True)
>>> q['next'] = '/a&b/'
>>> q.urlencode(safe='/')
'next=/a%26b/'
HttpResponse objects
====================
.. class:: HttpResponse
In contrast to :class:`HttpRequest` objects, which are created automatically by
Django, :class:`HttpResponse` objects are your responsibility. Each view you
write is responsible for instantiating, populating and returning an
:class:`HttpResponse`.
The :class:`HttpResponse` class lives in the :mod:`django.http` module.
Usage
-----
Passing strings
~~~~~~~~~~~~~~~
Typical usage is to pass the contents of the page, as a string, to the
:class:`HttpResponse` constructor::
>>> response = HttpResponse("Here's the text of the Web page.")
>>> response = HttpResponse("Text only, please.", mimetype="text/plain")
But if you want to add content incrementally, you can use ``response`` as a
file-like object::
>>> response = HttpResponse()
>>> response.write("<p>Here's the text of the Web page.</p>")
>>> response.write("<p>Here's another paragraph.</p>")
Passing iterators
~~~~~~~~~~~~~~~~~
Finally, you can pass ``HttpResponse`` an iterator rather than passing it
hard-coded strings. If you use this technique, follow these guidelines:
* The iterator should return strings.
* If an :class:`HttpResponse` has been initialized with an iterator as its
content, you can't use the :class:`HttpResponse` instance as a file-like
object. Doing so will raise ``Exception``.
Setting headers
~~~~~~~~~~~~~~~
To set or remove a header in your response, treat it like a dictionary::
>>> response = HttpResponse()
>>> response['Cache-Control'] = 'no-cache'
>>> del response['Cache-Control']
Note that unlike a dictionary, ``del`` doesn't raise ``KeyError`` if the header
doesn't exist.
HTTP headers cannot contain newlines. An attempt to set a header containing a
newline character (CR or LF) will raise ``BadHeaderError``
Telling the browser to treat the response as a file attachment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To tell the browser to treat the response as a file attachment, use the
``mimetype`` argument and set the ``Content-Disposition`` header. For example,
this is how you might return a Microsoft Excel spreadsheet::
>>> response = HttpResponse(my_data, mimetype='application/vnd.ms-excel')
>>> response['Content-Disposition'] = 'attachment; filename=foo.xls'
There's nothing Django-specific about the ``Content-Disposition`` header, but
it's easy to forget the syntax, so we've included it here.
Attributes
----------
.. attribute:: HttpResponse.content
A normal Python string representing the content, encoded from a Unicode
object if necessary.
.. attribute:: HttpResponse.status_code
The `HTTP Status code`_ for the response.
Methods
-------
.. method:: HttpResponse.__init__(content='', mimetype=None, status=200, content_type=DEFAULT_CONTENT_TYPE)
Instantiates an ``HttpResponse`` object with the given page content (a
string) and MIME type. The :setting:`DEFAULT_CONTENT_TYPE` is
``'text/html'``.
``content`` can be an iterator or a string. If it's an iterator, it should
return strings, and those strings will be joined together to form the
content of the response.
``status`` is the `HTTP Status code`_ for the response.
``content_type`` is an alias for ``mimetype``. Historically, this parameter
was only called ``mimetype``, but since this is actually the value included
in the HTTP ``Content-Type`` header, it can also include the character set
encoding, which makes it more than just a MIME type specification.
If ``mimetype`` is specified (not ``None``), that value is used.
Otherwise, ``content_type`` is used. If neither is given, the
:setting:`DEFAULT_CONTENT_TYPE` setting is used.
.. method:: HttpResponse.__setitem__(header, value)
Sets the given header name to the given value. Both ``header`` and
``value`` should be strings.
.. method:: HttpResponse.__delitem__(header)
Deletes the header with the given name. Fails silently if the header
doesn't exist. Case-insensitive.
.. method:: HttpResponse.__getitem__(header)
Returns the value for the given header name. Case-insensitive.
.. method:: HttpResponse.has_header(header)
Returns ``True`` or ``False`` based on a case-insensitive check for a
header with the given name.
.. method:: HttpResponse.set_cookie(key, value='', max_age=None, expires=None, path='/', domain=None, secure=None, httponly=False)
.. versionchanged:: 1.3
The possibility of specifying a ``datetime.datetime`` object in
``expires``, and the auto-calculation of ``max_age`` in such case
was added. The ``httponly`` argument was also added.
Sets a cookie. The parameters are the same as in the `cookie Morsel`_
object in the Python standard library.
* ``max_age`` should be a number of seconds, or ``None`` (default) if
the cookie should last only as long as the client's browser session.
If ``expires`` is not specified, it will be calculated.
* ``expires`` should either be a string in the format
``"Wdy, DD-Mon-YY HH:MM:SS GMT"`` or a ``datetime.datetime`` object
in UTC. If ``expires`` is a ``datetime`` object, the ``max_age``
will be calculated.
* Use ``domain`` if you want to set a cross-domain cookie. For example,
``domain=".lawrence.com"`` will set a cookie that is readable by
the domains www.lawrence.com, blogs.lawrence.com and
calendars.lawrence.com. Otherwise, a cookie will only be readable by
the domain that set it.
* Use ``httponly=True`` if you want to prevent client-side
JavaScript from having access to the cookie.
HTTPOnly_ is a flag included in a Set-Cookie HTTP response
header. It is not part of the RFC2109 standard for cookies,
and it isn't honored consistently by all browsers. However,
when it is honored, it can be a useful way to mitigate the
risk of client side script accessing the protected cookie
data.
.. _`cookie Morsel`: http://docs.python.org/library/cookie.html#Cookie.Morsel
.. _HTTPOnly: http://www.owasp.org/index.php/HTTPOnly
.. method:: HttpResponse.set_signed_cookie(key, value='', salt='', max_age=None, expires=None, path='/', domain=None, secure=None, httponly=False)
.. versionadded:: 1.4
Like :meth:`~HttpResponse.set_cookie()`, but
:doc:`cryptographic signing </topics/signing>` the cookie before setting
it. Use in conjunction with :meth:`HttpRequest.get_signed_cookie`.
You can use the optional ``salt`` argument for added key strength, but
you will need to remember to pass it to the corresponding
:meth:`HttpRequest.get_signed_cookie` call.
.. method:: HttpResponse.delete_cookie(key, path='/', domain=None)
Deletes the cookie with the given key. Fails silently if the key doesn't
exist.
Due to the way cookies work, ``path`` and ``domain`` should be the same
values you used in ``set_cookie()`` -- otherwise the cookie may not be
deleted.
.. method:: HttpResponse.write(content)
This method makes an :class:`HttpResponse` instance a file-like object.
.. method:: HttpResponse.flush()
This method makes an :class:`HttpResponse` instance a file-like object.
.. method:: HttpResponse.tell()
This method makes an :class:`HttpResponse` instance a file-like object.
.. _HTTP Status code: http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10
.. _ref-httpresponse-subclasses:
HttpResponse subclasses
-----------------------
Django includes a number of ``HttpResponse`` subclasses that handle different
types of HTTP responses. Like ``HttpResponse``, these subclasses live in
:mod:`django.http`.
.. class:: HttpResponseRedirect
The constructor takes a single argument -- the path to redirect to. This
can be a fully qualified URL (e.g. ``'http://www.yahoo.com/search/'``) or
an absolute path with no domain (e.g. ``'/search/'``). Note that this
returns an HTTP status code 302.
.. class:: HttpResponsePermanentRedirect
Like :class:`HttpResponseRedirect`, but it returns a permanent redirect
(HTTP status code 301) instead of a "found" redirect (status code 302).
.. class:: HttpResponseNotModified
The constructor doesn't take any arguments. Use this to designate that a
page hasn't been modified since the user's last request (status code 304).
.. class:: HttpResponseBadRequest
Acts just like :class:`HttpResponse` but uses a 400 status code.
.. class:: HttpResponseNotFound
Acts just like :class:`HttpResponse` but uses a 404 status code.
.. class:: HttpResponseForbidden
Acts just like :class:`HttpResponse` but uses a 403 status code.
.. class:: HttpResponseNotAllowed
Like :class:`HttpResponse`, but uses a 405 status code. Takes a single,
required argument: a list of permitted methods (e.g. ``['GET', 'POST']``).
.. class:: HttpResponseGone
Acts just like :class:`HttpResponse` but uses a 410 status code.
.. class:: HttpResponseServerError
Acts just like :class:`HttpResponse` but uses a 500 status code.