===================================== Writing your first Django app, part 1 ===================================== Let's learn by example. Throughout this tutorial, we'll walk you through the creation of a basic poll application. It'll consist of two parts: * A public site that lets people view polls and vote in them. * An admin site that lets you add, change and delete polls. We'll assume you have :doc:`Django installed ` already. You can tell Django is installed and which version by running the following command: .. code-block:: bash python -c "import django; print(django.get_version())" If Django is installed, you should see the version of your installation. If it isn't, you'll get an error telling "No module named django". This tutorial is written for Django |version| and Python 2.x. If the Django version doesn't match, you can refer to the tutorial for your version of Django by using the version switcher at the bottom right corner of this page, or update Django to the newest version. If you are using Python 3.x, be aware that your code may need to differ from what is in the tutorial and you should continue using the tutorial only if you know what you are doing with Python 3.x. See :doc:`How to install Django ` for advice on how to remove older versions of Django and install a newer one. .. admonition:: Where to get help: If you're having trouble going through this tutorial, please post a message to `django-users`__ or drop by `#django on irc.freenode.net`__ to chat with other Django users who might be able to help. __ http://groups.google.com/group/django-users __ irc://irc.freenode.net/django Creating a project ================== If this is your first time using Django, you'll have to take care of some initial setup. Namely, you'll need to auto-generate some code that establishes a Django :term:`project` -- a collection of settings for an instance of Django, including database configuration, Django-specific options and application-specific settings. From the command line, ``cd`` into a directory where you'd like to store your code, then run the following command: .. code-block:: bash django-admin.py startproject mysite This will create a ``mysite`` directory in your current directory. If it didn't work, see :ref:`troubleshooting-django-admin-py`. .. note:: You'll need to avoid naming projects after built-in Python or Django components. In particular, this means you should avoid using names like ``django`` (which will conflict with Django itself) or ``test`` (which conflicts with a built-in Python package). .. admonition:: Where should this code live? If your background is in plain old PHP (with no use of modern frameworks), you're probably used to putting code under the Web server's document root (in a place such as ``/var/www``). With Django, you don't do that. It's not a good idea to put any of this Python code within your Web server's document root, because it risks the possibility that people may be able to view your code over the Web. That's not good for security. Put your code in some directory **outside** of the document root, such as :file:`/home/mycode`. Let's look at what :djadmin:`startproject` created:: mysite/ manage.py mysite/ __init__.py settings.py urls.py wsgi.py .. admonition:: Doesn't match what you see? The default project layout recently changed. If you're seeing a "flat" layout (with no inner :file:`mysite/` directory), you're probably using a version of Django that doesn't match this tutorial version. You'll want to either switch to the older tutorial or the newer Django version. These files are: * The outer :file:`mysite/` root directory is just a container for your project. Its name doesn't matter to Django; you can rename it to anything you like. * :file:`manage.py`: A command-line utility that lets you interact with this Django project in various ways. You can read all the details about :file:`manage.py` in :doc:`/ref/django-admin`. * The inner :file:`mysite/` directory is the actual Python package for your project. Its name is the Python package name you'll need to use to import anything inside it (e.g. ``mysite.urls``). * :file:`mysite/__init__.py`: An empty file that tells Python that this directory should be considered a Python package. (Read `more about packages`_ in the official Python docs if you're a Python beginner.) * :file:`mysite/settings.py`: Settings/configuration for this Django project. :doc:`/topics/settings` will tell you all about how settings work. * :file:`mysite/urls.py`: The URL declarations for this Django project; a "table of contents" of your Django-powered site. You can read more about URLs in :doc:`/topics/http/urls`. * :file:`mysite/wsgi.py`: An entry-point for WSGI-compatible web servers to serve your project. See :doc:`/howto/deployment/wsgi/index` for more details. .. _more about packages: http://docs.python.org/tutorial/modules.html#packages The development server ---------------------- Let's verify this worked. Change into the outer :file:`mysite` directory, if you haven't already, and run the command ``python manage.py runserver``. You'll see the following output on the command line: .. parsed-literal:: Validating models... 0 errors found |today| - 15:50:53 Django version |version|, using settings 'mysite.settings' Starting development server at http://127.0.0.1:8000/ Quit the server with CONTROL-C. You've started the Django development server, a lightweight Web server written purely in Python. We've included this with Django so you can develop things rapidly, without having to deal with configuring a production server -- such as Apache -- until you're ready for production. Now's a good time to note: **Don't** use this server in anything resembling a production environment. It's intended only for use while developing. (We're in the business of making Web frameworks, not Web servers.) Now that the server's running, visit http://127.0.0.1:8000/ with your Web browser. You'll see a "Welcome to Django" page, in pleasant, light-blue pastel. It worked! .. admonition:: Changing the port By default, the :djadmin:`runserver` command starts the development server on the internal IP at port 8000. If you want to change the server's port, pass it as a command-line argument. For instance, this command starts the server on port 8080: .. code-block:: bash python manage.py runserver 8080 If you want to change the server's IP, pass it along with the port. So to listen on all public IPs (useful if you want to show off your work on other computers), use: .. code-block:: bash python manage.py runserver 0.0.0.0:8000 Full docs for the development server can be found in the :djadmin:`runserver` reference. Database setup -------------- Now, edit :file:`mysite/settings.py`. It's a normal Python module with module-level variables representing Django settings. By default, the configuration uses SQLite. If you're new to databases, or you're just interested in trying Django, this is the easiest choice. SQLite is included in Python, so you won't need to install anything else to support your database. If you wish to use another database, install the appropriate :ref:`database bindings `, and change the following keys in the :setting:`DATABASES` ``'default'`` item to match your database connection settings: * :setting:`ENGINE ` -- Either ``'django.db.backends.sqlite3'``, ``'django.db.backends.postgresql_psycopg2'``, ``'django.db.backends.mysql'``, or ``'django.db.backends.oracle'``. Other backends are :setting:`also available `. * :setting:`NAME` -- The name of your database. If you're using SQLite, the database will be a file on your computer; in that case, :setting:`NAME` should be the full absolute path, including filename, of that file. The default value, ``os.path.join(BASE_DIR, 'db.sqlite3')``, will store the file in your project directory. If you are not using SQLite as your database, additional settings such as :setting:`USER`, :setting:`PASSWORD`, :setting:`HOST` must be added. For more details, see the reference documentation for :setting:`DATABASES`. .. note:: If you're using PostgreSQL or MySQL, make sure you've created a database by this point. Do that with "``CREATE DATABASE database_name;``" within your database's interactive prompt. If you're using SQLite, you don't need to create anything beforehand - the database file will be created automatically when it is needed. While you're editing :file:`mysite/settings.py`, set :setting:`TIME_ZONE` to your time zone. Also, note the :setting:`INSTALLED_APPS` setting at the top of the file. That holds the names of all Django applications that are activated in this Django instance. Apps can be used in multiple projects, and you can package and distribute them for use by others in their projects. By default, :setting:`INSTALLED_APPS` contains the following apps, all of which come with Django: * :mod:`django.contrib.admin` -- The admin site. You'll use it in :doc:`part 2 of this tutorial `. * :mod:`django.contrib.auth` -- An authentication system. * :mod:`django.contrib.contenttypes` -- A framework for content types. * :mod:`django.contrib.sessions` -- A session framework. * :mod:`django.contrib.messages` -- A messaging framework. * :mod:`django.contrib.staticfiles` -- A framework for managing static files. These applications are included by default as a convenience for the common case. Some of these applications makes use of at least one database table, though, so we need to create the tables in the database before we can use them. To do that, run the following command: .. code-block:: bash python manage.py syncdb The :djadmin:`syncdb` command looks at the :setting:`INSTALLED_APPS` setting and creates any necessary database tables according to the database settings in your :file:`mysite/settings.py` file. You'll see a message for each database table it creates, and you'll get a prompt asking you if you'd like to create a superuser account for the authentication system. Go ahead and do that. If you're interested, run the command-line client for your database and type ``\dt`` (PostgreSQL), ``SHOW TABLES;`` (MySQL), or ``.schema`` (SQLite) to display the tables Django created. .. admonition:: For the minimalists Like we said above, the default applications are included for the common case, but not everybody needs them. If you don't need any or all of them, feel free to comment-out or delete the appropriate line(s) from :setting:`INSTALLED_APPS` before running :djadmin:`syncdb`. The :djadmin:`syncdb` command will only create tables for apps in :setting:`INSTALLED_APPS`. .. _creating-models: Creating models =============== Now that your environment -- a "project" -- is set up, you're set to start doing work. Each application you write in Django consists of a Python package that follows a certain convention. Django comes with a utility that automatically generates the basic directory structure of an app, so you can focus on writing code rather than creating directories. .. admonition:: Projects vs. apps What's the difference between a project and an app? An app is a Web application that does something -- e.g., a Weblog system, a database of public records or a simple poll app. A project is a collection of configuration and apps for a particular Web site. A project can contain multiple apps. An app can be in multiple projects. Your apps can live anywhere on your `Python path`_. In this tutorial, we'll create our poll app right next to your :file:`manage.py` file so that it can be imported as its own top-level module, rather than a submodule of ``mysite``. To create your app, make sure you're in the same directory as :file:`manage.py` and type this command: .. code-block:: bash python manage.py startapp polls That'll create a directory :file:`polls`, which is laid out like this:: polls/ __init__.py admin.py models.py tests.py views.py This directory structure will house the poll application. The first step in writing a database Web app in Django is to define your models -- essentially, your database layout, with additional metadata. .. admonition:: Philosophy A model is the single, definitive source of data about your data. It contains the essential fields and behaviors of the data you're storing. Django follows the :ref:`DRY Principle `. The goal is to define your data model in one place and automatically derive things from it. In our simple poll app, we'll create two models: ``Question`` and ``Choice``. A ``Question`` has a question and a publication date. A ``Choice`` has two fields: the text of the choice and a vote tally. Each ``Choice`` is associated with a ``Question``. These concepts are represented by simple Python classes. Edit the :file:`polls/models.py` file so it looks like this:: from django.db import models class Question(models.Model): question_text = models.CharField(max_length=200) pub_date = models.DateTimeField('date published') class Choice(models.Model): question = models.ForeignKey(Question) choice_text = models.CharField(max_length=200) votes = models.IntegerField(default=0) The code is straightforward. Each model is represented by a class that subclasses :class:`django.db.models.Model`. Each model has a number of class variables, each of which represents a database field in the model. Each field is represented by an instance of a :class:`~django.db.models.Field` class -- e.g., :class:`~django.db.models.CharField` for character fields and :class:`~django.db.models.DateTimeField` for datetimes. This tells Django what type of data each field holds. The name of each :class:`~django.db.models.Field` instance (e.g. ``question_text`` or ``pub_date``) is the field's name, in machine-friendly format. You'll use this value in your Python code, and your database will use it as the column name. You can use an optional first positional argument to a :class:`~django.db.models.Field` to designate a human-readable name. That's used in a couple of introspective parts of Django, and it doubles as documentation. If this field isn't provided, Django will use the machine-readable name. In this example, we've only defined a human-readable name for ``Question.pub_date``. For all other fields in this model, the field's machine-readable name will suffice as its human-readable name. Some :class:`~django.db.models.Field` classes have required arguments. :class:`~django.db.models.CharField`, for example, requires that you give it a :attr:`~django.db.models.CharField.max_length`. That's used not only in the database schema, but in validation, as we'll soon see. A :class:`~django.db.models.Field` can also have various optional arguments; in this case, we've set the :attr:`~django.db.models.Field.default` value of ``votes`` to 0. Finally, note a relationship is defined, using :class:`~django.db.models.ForeignKey`. That tells Django each ``Choice`` is related to a single ``Question``. Django supports all the common database relationships: many-to-ones, many-to-manys and one-to-ones. .. _`Python path`: http://docs.python.org/tutorial/modules.html#the-module-search-path Activating models ================= That small bit of model code gives Django a lot of information. With it, Django is able to: * Create a database schema (``CREATE TABLE`` statements) for this app. * Create a Python database-access API for accessing ``Question`` and ``Choice`` objects. But first we need to tell our project that the ``polls`` app is installed. .. admonition:: Philosophy Django apps are "pluggable": You can use an app in multiple projects, and you can distribute apps, because they don't have to be tied to a given Django installation. Edit the :file:`mysite/settings.py` file again, and change the :setting:`INSTALLED_APPS` setting to include the string ``'polls'``. So it'll look like this:: INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'polls', ) Now Django knows to include the ``polls`` app. Let's run another command: .. code-block:: bash python manage.py sql polls You should see something similar to the following (the ``CREATE TABLE`` SQL statements for the polls app): .. code-block:: sql BEGIN; CREATE TABLE "polls_question" ( "id" integer NOT NULL PRIMARY KEY AUTOINCREMENT, "question_text" varchar(200) NOT NULL, "pub_date" datetime NOT NULL ); CREATE TABLE "polls_choice" ( "id" integer NOT NULL PRIMARY KEY AUTOINCREMENT, "question_id" integer NOT NULL REFERENCES "polls_poll" ("id"), "choice_text" varchar(200) NOT NULL, "votes" integer NOT NULL ); COMMIT; Note the following: * The exact output will vary depending on the database you are using. The example above is generated for SQLite. * Table names are automatically generated by combining the name of the app (``polls``) and the lowercase name of the model -- ``question`` and ``choice``. (You can override this behavior.) * Primary keys (IDs) are added automatically. (You can override this, too.) * By convention, Django appends ``"_id"`` to the foreign key field name. (Yes, you can override this, as well.) * The foreign key relationship is made explicit by a ``REFERENCES`` statement. * It's tailored to the database you're using, so database-specific field types such as ``auto_increment`` (MySQL), ``serial`` (PostgreSQL), or ``integer primary key autoincrement`` (SQLite) are handled for you automatically. Same goes for quoting of field names -- e.g., using double quotes or single quotes. * The :djadmin:`sql` command doesn't actually run the SQL in your database - it just prints it to the screen so that you can see what SQL Django thinks is required. If you wanted to, you could copy and paste this SQL into your database prompt. However, as we will see shortly, Django provides an easier way of committing the SQL to the database. If you're interested, also run the following commands: * :djadmin:`python manage.py validate ` -- Checks for any errors in the construction of your models. * :djadmin:`python manage.py sqlcustom polls ` -- Outputs any :ref:`custom SQL statements ` (such as table modifications or constraints) that are defined for the application. * :djadmin:`python manage.py sqlclear polls ` -- Outputs the necessary ``DROP TABLE`` statements for this app, according to which tables already exist in your database (if any). * :djadmin:`python manage.py sqlindexes polls ` -- Outputs the ``CREATE INDEX`` statements for this app. * :djadmin:`python manage.py sqlall polls ` -- A combination of all the SQL from the :djadmin:`sql`, :djadmin:`sqlcustom`, and :djadmin:`sqlindexes` commands. Looking at the output of those commands can help you understand what's actually happening under the hood. Now, run :djadmin:`syncdb` again to create those model tables in your database: .. code-block:: bash python manage.py syncdb The :djadmin:`syncdb` command runs the SQL from :djadmin:`sqlall` on your database for all apps in :setting:`INSTALLED_APPS` that don't already exist in your database. This creates all the tables, initial data and indexes for any apps you've added to your project since the last time you ran syncdb. :djadmin:`syncdb` can be called as often as you like, and it will only ever create the tables that don't exist. Read the :doc:`django-admin.py documentation ` for full information on what the ``manage.py`` utility can do. Playing with the API ==================== Now, let's hop into the interactive Python shell and play around with the free API Django gives you. To invoke the Python shell, use this command: .. code-block:: bash python manage.py shell We're using this instead of simply typing "python", because :file:`manage.py` sets the ``DJANGO_SETTINGS_MODULE`` environment variable, which gives Django the Python import path to your :file:`mysite/settings.py` file. .. admonition:: Bypassing manage.py If you'd rather not use :file:`manage.py`, no problem. Just set the ``DJANGO_SETTINGS_MODULE`` environment variable to ``mysite.settings`` and run ``python`` from the same directory :file:`manage.py` is in (or ensure that directory is on the Python path, so that ``import mysite`` works). For more information on all of this, see the :doc:`django-admin.py documentation `. Once you're in the shell, explore the :doc:`database API `:: >>> from polls.models import Question, Choice # Import the model classes we just wrote. # No questions are in the system yet. >>> Question.objects.all() [] # Create a new Question. # Support for time zones is enabled in the default settings file, so # Django expects a datetime with tzinfo for pub_date. Use timezone.now() # instead of datetime.datetime.now() and it will do the right thing. >>> from django.utils import timezone >>> q = Question(question_text="What's new?", pub_date=timezone.now()) # Save the object into the database. You have to call save() explicitly. >>> q.save() # Now it has an ID. Note that this might say "1L" instead of "1", depending # on which database you're using. That's no biggie; it just means your # database backend prefers to return integers as Python long integer # objects. >>> q.id 1 # Access database columns via Python attributes. >>> q.question_text "What's new?" >>> q.pub_date datetime.datetime(2012, 2, 26, 13, 0, 0, 775217, tzinfo=) # Change values by changing the attributes, then calling save(). >>> q.question_text = "What's up?" >>> q.save() # objects.all() displays all the questions in the database. >>> Question.objects.all() [] Wait a minute. ```` is, utterly, an unhelpful representation of this object. Let's fix that by editing the ``Question`` model (in the ``polls/models.py`` file) and adding a :meth:`~django.db.models.Model.__unicode__` method to both ``Question`` and ``Choice``. On Python 3, simply replace ``__unicode__`` by ``__str__`` in the following example:: from django.db import models class Question(models.Model): # ... def __unicode__(self): # Python 3: def __str__(self): return self.question_text class Choice(models.Model): # ... def __unicode__(self): # Python 3: def __str__(self): return self.choice_text It's important to add :meth:`~django.db.models.Model.__unicode__` methods (or :meth:`~django.db.models.Model.__str__` on Python 3) to your models, not only for your own sanity when dealing with the interactive prompt, but also because objects' representations are used throughout Django's automatically-generated admin. .. admonition:: ``__unicode__`` or ``__str__``? On Python 3, things are simpler, just use :meth:`~django.db.models.Model.__str__` and forget about :meth:`~django.db.models.Model.__unicode__`. If you're familiar with Python 2, you might be in the habit of adding :meth:`~django.db.models.Model.__str__` methods to your classes, not :meth:`~django.db.models.Model.__unicode__` methods. We use :meth:`~django.db.models.Model.__unicode__` here because Django models deal with Unicode by default. All data stored in your database is converted to Unicode when it's returned. Django models have a default :meth:`~django.db.models.Model.__str__` method that calls :meth:`~django.db.models.Model.__unicode__` and converts the result to a UTF-8 bytestring. This means that ``unicode(p)`` will return a Unicode string, and ``str(p)`` will return a normal string, with characters encoded as UTF-8. If all of this is gibberish to you, just remember to add :meth:`~django.db.models.Model.__unicode__` methods to your models. With any luck, things should Just Work for you. Note these are normal Python methods. Let's add a custom method, just for demonstration:: import datetime from django.utils import timezone # ... class Question(models.Model): # ... def was_published_recently(self): return self.pub_date >= timezone.now() - datetime.timedelta(days=1) Note the addition of ``import datetime`` and ``from django.utils import timezone``, to reference Python's standard :mod:`datetime` module and Django's time-zone-related utilities in :mod:`django.utils.timezone`, respectively. If you aren't familiar with time zone handling in Python, you can learn more in the :doc:`time zone support docs `. Save these changes and start a new Python interactive shell by running ``python manage.py shell`` again:: >>> from polls.models import Question, Choice # Make sure our __unicode__() addition worked. >>> Question.objects.all() [] # Django provides a rich database lookup API that's entirely driven by # keyword arguments. >>> Question.objects.filter(id=1) [] >>> Question.objects.filter(question_text__startswith='What') [] # Get the question that was published this year. >>> from django.utils import timezone >>> current_year = timezone.now().year >>> Question.objects.get(pub_date__year=current_year) # Request an ID that doesn't exist, this will raise an exception. >>> Question.objects.get(id=2) Traceback (most recent call last): ... DoesNotExist: Question matching query does not exist. Lookup parameters were {'id': 2} # Lookup by a primary key is the most common case, so Django provides a # shortcut for primary-key exact lookups. # The following is identical to Question.objects.get(id=1). >>> Question.objects.get(pk=1) # Make sure our custom method worked. >>> q = Question.objects.get(pk=1) >>> q.was_published_recently() True # Give the Question a couple of Choices. The create call constructs a new # Choice object, does the INSERT statement, adds the choice to the set # of available choices and returns the new Choice object. Django creates # a set to hold the "other side" of a ForeignKey relation # (e.g. a question's choice) which can be accessed via the API. >>> q = Question.objects.get(pk=1) # Display any choices from the related object set -- none so far. >>> q.choice_set.all() [] # Create three choices. >>> q.choice_set.create(choice_text='Not much', votes=0) >>> q.choice_set.create(choice_text='The sky', votes=0) >>> c = q.choice_set.create(choice_text='Just hacking again', votes=0) # Choice objects have API access to their related Question objects. >>> c.question # And vice versa: Question objects get access to Choice objects. >>> q.choice_set.all() [, , ] >>> q.choice_set.count() 3 # The API automatically follows relationships as far as you need. # Use double underscores to separate relationships. # This works as many levels deep as you want; there's no limit. # Find all Choices for any question whose pub_date is in this year # (reusing the 'current_year' variable we created above). >>> Choice.objects.filter(question__pub_date__year=current_year) [, , ] # Let's delete one of the choices. Use delete() for that. >>> c = q.choice_set.filter(choice_text__startswith='Just hacking') >>> c.delete() For more information on model relations, see :doc:`Accessing related objects `. For more on how to use double underscores to perform field lookups via the API, see :ref:`Field lookups `. For full details on the database API, see our :doc:`Database API reference `. When you're comfortable with the API, read :doc:`part 2 of this tutorial ` to get Django's automatic admin working.