# coding: utf-8 from django.db import models try: sorted except NameError: from django.utils.itercompat import sorted # For Python 2.3 class Author(models.Model): name = models.CharField(max_length=100) age = models.IntegerField() friends = models.ManyToManyField('self', blank=True) def __unicode__(self): return self.name class Publisher(models.Model): name = models.CharField(max_length=255) num_awards = models.IntegerField() def __unicode__(self): return self.name class Book(models.Model): isbn = models.CharField(max_length=9) name = models.CharField(max_length=255) pages = models.IntegerField() rating = models.FloatField() price = models.DecimalField(decimal_places=2, max_digits=6) authors = models.ManyToManyField(Author) contact = models.ForeignKey(Author, related_name='book_contact_set') publisher = models.ForeignKey(Publisher) pubdate = models.DateField() def __unicode__(self): return self.name class Store(models.Model): name = models.CharField(max_length=255) books = models.ManyToManyField(Book) original_opening = models.DateTimeField() friday_night_closing = models.TimeField() def __unicode__(self): return self.name # Tests on 'aggregate' # Different backends and numbers. __test__ = {'API_TESTS': """ >>> from django.core import management >>> try: ... from decimal import Decimal ... except: ... from django.utils._decimal import Decimal >>> from datetime import date # Reset the database representation of this app. # This will return the database to a clean initial state. >>> management.call_command('flush', verbosity=0, interactive=False) # Empty Call - request nothing, get nothing. >>> Author.objects.all().aggregate() {} >>> from django.db.models import Avg, Sum, Count, Max, Min # Single model aggregation # # Single aggregate # Average age of Authors >>> Author.objects.all().aggregate(Avg('age')) {'age__avg': 37.4...} # Multiple aggregates # Average and Sum of Author ages >>> Author.objects.all().aggregate(Sum('age'), Avg('age')) {'age__sum': 337, 'age__avg': 37.4...} # Aggreates interact with filters, and only # generate aggregate values for the filtered values # Sum of the age of those older than 29 years old >>> Author.objects.all().filter(age__gt=29).aggregate(Sum('age')) {'age__sum': 254} # Depth-1 Joins # # On Relationships with self # Average age of the friends of each author >>> Author.objects.all().aggregate(Avg('friends__age')) {'friends__age__avg': 34.07...} # On ManyToMany Relationships # # Forward # Average age of the Authors of Books with a rating of less than 4.5 >>> Book.objects.all().filter(rating__lt=4.5).aggregate(Avg('authors__age')) {'authors__age__avg': 38.2...} # Backward # Average rating of the Books whose Author's name contains the letter 'a' >>> Author.objects.all().filter(name__contains='a').aggregate(Avg('book__rating')) {'book__rating__avg': 4.0} # On OneToMany Relationships # # Forward # Sum of the number of awards of each Book's Publisher >>> Book.objects.all().aggregate(Sum('publisher__num_awards')) {'publisher__num_awards__sum': 30} # Backward # Sum of the price of every Book that has a Publisher >>> Publisher.objects.all().aggregate(Sum('book__price')) {'book__price__sum': Decimal("270.27")} # Multiple Joins # # Forward >>> Store.objects.all().aggregate(Max('books__authors__age')) {'books__authors__age__max': 57} # Backward # Note that the very long default alias may be truncated >>> Author.objects.all().aggregate(Min('book__publisher__num_awards')) {'book__publisher__num_award...': 1} # Aggregate outputs can also be aliased. # Average amazon.com Book rating >>> Store.objects.filter(name='Amazon.com').aggregate(amazon_mean=Avg('books__rating')) {'amazon_mean': 4.08...} # Tests on annotate() # An empty annotate call does nothing but return the same QuerySet >>> Book.objects.all().annotate().order_by('pk') [, , , , , ] # Annotate inserts the alias into the model object with the aggregated result >>> books = Book.objects.all().annotate(mean_age=Avg('authors__age')) >>> books.get(pk=1).name u'The Definitive Guide to Django: Web Development Done Right' >>> books.get(pk=1).mean_age 34.5 # On ManyToMany Relationships # Forward # Average age of the Authors of each book with a rating less than 4.5 >>> books = Book.objects.all().filter(rating__lt=4.5).annotate(Avg('authors__age')) >>> sorted([(b.name, b.authors__age__avg) for b in books]) [(u'Artificial Intelligence: A Modern Approach', 51.5), (u'Practical Django Projects', 29.0), (u'Python Web Development with Django', 30.3...), (u'Sams Teach Yourself Django in 24 Hours', 45.0)] # Count the number of authors of each book >>> books = Book.objects.annotate(num_authors=Count('authors')) >>> sorted([(b.name, b.num_authors) for b in books]) [(u'Artificial Intelligence: A Modern Approach', 2), (u'Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp', 1), (u'Practical Django Projects', 1), (u'Python Web Development with Django', 3), (u'Sams Teach Yourself Django in 24 Hours', 1), (u'The Definitive Guide to Django: Web Development Done Right', 2)] # Backward # Average rating of the Books whose Author's names contains the letter 'a' >>> authors = Author.objects.all().filter(name__contains='a').annotate(Avg('book__rating')) >>> sorted([(a.name, a.book__rating__avg) for a in authors]) [(u'Adrian Holovaty', 4.5), (u'Brad Dayley', 3.0), (u'Jacob Kaplan-Moss', 4.5), (u'James Bennett', 4.0), (u'Paul Bissex', 4.0), (u'Stuart Russell', 4.0)] # Count the number of books written by each author >>> authors = Author.objects.annotate(num_books=Count('book')) >>> sorted([(a.name, a.num_books) for a in authors]) [(u'Adrian Holovaty', 1), (u'Brad Dayley', 1), (u'Jacob Kaplan-Moss', 1), (u'James Bennett', 1), (u'Jeffrey Forcier', 1), (u'Paul Bissex', 1), (u'Peter Norvig', 2), (u'Stuart Russell', 1), (u'Wesley J. Chun', 1)] # On OneToMany Relationships # Forward # Annotate each book with the number of awards of each Book's Publisher >>> books = Book.objects.all().annotate(Sum('publisher__num_awards')) >>> sorted([(b.name, b.publisher__num_awards__sum) for b in books]) [(u'Artificial Intelligence: A Modern Approach', 7), (u'Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp', 9), (u'Practical Django Projects', 3), (u'Python Web Development with Django', 7), (u'Sams Teach Yourself Django in 24 Hours', 1), (u'The Definitive Guide to Django: Web Development Done Right', 3)] # Backward # Annotate each publisher with the sum of the price of all books sold >>> publishers = Publisher.objects.all().annotate(Sum('book__price')) >>> sorted([(p.name, p.book__price__sum) for p in publishers]) [(u'Apress', Decimal("59.69")), (u"Jonno's House of Books", None), (u'Morgan Kaufmann', Decimal("75.00")), (u'Prentice Hall', Decimal("112.49")), (u'Sams', Decimal("23.09"))] # Calls to values() are not commutative over annotate(). # Calling values on a queryset that has annotations returns the output # as a dictionary >>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values() [{'rating': 4.5, 'isbn': u'159059725', 'name': u'The Definitive Guide to Django: Web Development Done Right', 'pubdate': datetime.date(2007, 12, 6), 'price': Decimal("30..."), 'contact_id': 1, 'id': 1, 'publisher_id': 1, 'pages': 447, 'mean_age': 34.5}] >>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values('pk', 'isbn', 'mean_age') [{'pk': 1, 'isbn': u'159059725', 'mean_age': 34.5}] # Calling values() with parameters reduces the output >>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values('name') [{'name': u'The Definitive Guide to Django: Web Development Done Right'}] # An empty values() call before annotating has the same effect as an # empty values() call after annotating >>> Book.objects.filter(pk=1).values().annotate(mean_age=Avg('authors__age')) [{'rating': 4.5, 'isbn': u'159059725', 'name': u'The Definitive Guide to Django: Web Development Done Right', 'pubdate': datetime.date(2007, 12, 6), 'price': Decimal("30..."), 'contact_id': 1, 'id': 1, 'publisher_id': 1, 'pages': 447, 'mean_age': 34.5}] # Calling annotate() on a ValuesQuerySet annotates over the groups of # fields to be selected by the ValuesQuerySet. # Note that an extra parameter is added to each dictionary. This # parameter is a queryset representing the objects that have been # grouped to generate the annotation >>> Book.objects.all().values('rating').annotate(n_authors=Count('authors__id'), mean_age=Avg('authors__age')).order_by('rating') [{'rating': 3.0, 'n_authors': 1, 'mean_age': 45.0}, {'rating': 4.0, 'n_authors': 6, 'mean_age': 37.1...}, {'rating': 4.5, 'n_authors': 2, 'mean_age': 34.5}, {'rating': 5.0, 'n_authors': 1, 'mean_age': 57.0}] # If a join doesn't match any objects, an aggregate returns None >>> authors = Author.objects.all().annotate(Avg('friends__age')).order_by('id') >>> len(authors) 9 >>> sorted([(a.name, a.friends__age__avg) for a in authors]) [(u'Adrian Holovaty', 32.0), (u'Brad Dayley', None), (u'Jacob Kaplan-Moss', 29.5), (u'James Bennett', 34.0), (u'Jeffrey Forcier', 27.0), (u'Paul Bissex', 31.0), (u'Peter Norvig', 46.0), (u'Stuart Russell', 57.0), (u'Wesley J. Chun', 33.6...)] # The Count aggregation function allows an extra parameter: distinct. # This restricts the count results to unique items >>> Book.objects.all().aggregate(Count('rating')) {'rating__count': 6} >>> Book.objects.all().aggregate(Count('rating', distinct=True)) {'rating__count': 4} # Retreiving the grouped objects # When using Count you can also omit the primary key and refer only to # the related field name if you want to count all the related objects # and not a specific column >>> explicit = list(Author.objects.annotate(Count('book__id'))) >>> implicit = list(Author.objects.annotate(Count('book'))) >>> explicit == implicit True # Ordering is allowed on aggregates >>> Book.objects.values('rating').annotate(oldest=Max('authors__age')).order_by('oldest', 'rating') [{'rating': 4.5, 'oldest': 35}, {'rating': 3.0, 'oldest': 45}, {'rating': 4.0, 'oldest': 57}, {'rating': 5.0, 'oldest': 57}] >>> Book.objects.values('rating').annotate(oldest=Max('authors__age')).order_by('-oldest', '-rating') [{'rating': 5.0, 'oldest': 57}, {'rating': 4.0, 'oldest': 57}, {'rating': 3.0, 'oldest': 45}, {'rating': 4.5, 'oldest': 35}] # It is possible to aggregate over anotated values >>> Book.objects.all().annotate(num_authors=Count('authors__id')).aggregate(Avg('num_authors')) {'num_authors__avg': 1.66...} # You can filter the results based on the aggregation alias. # Lets add a publisher to test the different possibilities for filtering >>> p = Publisher(name='Expensive Publisher', num_awards=0) >>> p.save() >>> Book(name='ExpensiveBook1', pages=1, isbn='111', rating=3.5, price=Decimal("1000"), publisher=p, contact_id=1, pubdate=date(2008,12,1)).save() >>> Book(name='ExpensiveBook2', pages=1, isbn='222', rating=4.0, price=Decimal("1000"), publisher=p, contact_id=1, pubdate=date(2008,12,2)).save() >>> Book(name='ExpensiveBook3', pages=1, isbn='333', rating=4.5, price=Decimal("35"), publisher=p, contact_id=1, pubdate=date(2008,12,3)).save() # Publishers that have: # (i) more than one book >>> Publisher.objects.annotate(num_books=Count('book__id')).filter(num_books__gt=1).order_by('pk') [, , ] # (ii) a book that cost less than 40 >>> Publisher.objects.filter(book__price__lt=Decimal("40.0")).order_by('pk') [, , , , ] # (iii) more than one book and (at least) a book that cost less than 40 >>> Publisher.objects.annotate(num_books=Count('book__id')).filter(num_books__gt=1, book__price__lt=Decimal("40.0")).order_by('pk') [, , ] # (iv) more than one book that costs less than $40 >>> Publisher.objects.filter(book__price__lt=Decimal("40.0")).annotate(num_books=Count('book__id')).filter(num_books__gt=1).order_by('pk') [] # Now a bit of testing on the different lookup types # >>> Publisher.objects.annotate(num_books=Count('book')).filter(num_books__range=[1, 3]).order_by('pk') [, , , , ] >>> Publisher.objects.annotate(num_books=Count('book')).filter(num_books__range=[1, 2]).order_by('pk') [, , , ] >>> Publisher.objects.annotate(num_books=Count('book')).filter(num_books__in=[1, 3]).order_by('pk') [, , ] >>> Publisher.objects.annotate(num_books=Count('book')).filter(num_books__isnull=True) [] >>> p.delete() # Does Author X have any friends? (or better, how many friends does author X have) >> Author.objects.filter(pk=1).aggregate(Count('friends__id')) {'friends__id__count': 2.0} # Give me a list of all Books with more than 1 authors >>> Book.objects.all().annotate(num_authors=Count('authors__name')).filter(num_authors__ge=2).order_by('pk') [, ] # Give me a list of all Authors that have no friends >>> Author.objects.all().annotate(num_friends=Count('friends__id', distinct=True)).filter(num_friends=0).order_by('pk') [] # Give me a list of all publishers that have published more than 1 books >>> Publisher.objects.all().annotate(num_books=Count('book__id')).filter(num_books__gt=1).order_by('pk') [, ] # Give me a list of all publishers that have published more than 1 books that cost less than 40 >>> Publisher.objects.all().filter(book__price__lt=Decimal("40.0")).annotate(num_books=Count('book__id')).filter(num_books__gt=1) [] # Give me a list of all Books that were written by X and one other author. >>> Book.objects.all().annotate(num_authors=Count('authors__id')).filter(authors__name__contains='Norvig', num_authors__gt=1) [] # Give me the average rating of all Books that were written by X and one other author. #(Aggregate over objects discovered using membership of the m2m set) # Adding an existing author to another book to test it the right way >>> a = Author.objects.get(name__contains='Norvig') >>> b = Book.objects.get(name__contains='Done Right') >>> b.authors.add(a) >>> b.save() # This should do it >>> Book.objects.all().annotate(num_authors=Count('authors__id')).filter(authors__name__contains='Norvig', num_authors__gt=1).aggregate(Avg('rating')) {'rating__avg': 4.25} >>> b.authors.remove(a) # Give me a list of all Authors that have published a book with at least one other person # (Filters over a count generated on a related object) # # Cheating: [a for a in Author.objects.all().annotate(num_coleagues=Count('book__authors__id'), num_books=Count('book__id', distinct=True)) if a.num_coleagues - a.num_books > 0] # F-Syntax is required. Will be fixed after F objects are available # Aggregates also work on dates, times and datetimes >>> Publisher.objects.annotate(earliest_book=Min('book__pubdate')).exclude(earliest_book=None).order_by('earliest_book').values() [{'earliest_book': datetime.date(1991, 10, 15), 'num_awards': 9, 'id': 4, 'name': u'Morgan Kaufmann'}, {'earliest_book': datetime.date(1995, 1, 15), 'num_awards': 7, 'id': 3, 'name': u'Prentice Hall'}, {'earliest_book': datetime.date(2007, 12, 6), 'num_awards': 3, 'id': 1, 'name': u'Apress'}, {'earliest_book': datetime.date(2008, 3, 3), 'num_awards': 1, 'id': 2, 'name': u'Sams'}] >>> Store.objects.aggregate(Max('friday_night_closing'), Min("original_opening")) {'friday_night_closing__max': datetime.time(23, 59, 59), 'original_opening__min': datetime.datetime(1945, 4, 25, 16, 24, 14)} # values_list() can also be used >>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values_list('pk', 'isbn', 'mean_age') [(1, u'159059725', 34.5)] >>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values_list('isbn') [(u'159059725',)] >>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values_list('mean_age') [(34.5,)] >>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values_list('mean_age', flat=True) [34.5] >>> Book.objects.values_list('price').annotate(count=Count('price')).order_by('-count', 'price') [(Decimal('29.69'), 2), (Decimal('23.09'), 1), (Decimal('30'), 1), (Decimal('75'), 1), (Decimal('82.8'), 1)] """}