.. _intro-tutorial01:

=====================================
Writing your first Django app, part 1
=====================================

Let's learn by example.

Throughout this tutorial, we'll walk you through the creation of a basic
poll application.

It'll consist of two parts:

    * A public site that lets people view polls and vote in them.
    * An admin site that lets you add, change and delete polls.

We'll assume you have :ref:`Django installed <intro-install>` already. You can
tell Django is installed by running the Python interactive interpreter and
typing ``import django``. If that command runs successfully, with no errors,
Django is installed.

.. admonition:: Where to get help:

    If you're having trouble going through this tutorial, please post a message
    to `django-users`__ or drop by `#django on irc.freenode.net`__ to chat
    with other Django users who might be able to help.

__ http://groups.google.com/group/django-users
__ irc://irc.freenode.net/django

Creating a project
==================

If this is your first time using Django, you'll have to take care of some
initial setup. Namely, you'll need to auto-generate some code that establishes a
Django :term:`project` -- a collection of settings for an instance of Django,
including database configuration, Django-specific options and
application-specific settings.

From the command line, ``cd`` into a directory where you'd like to store your
code, then run the command ``django-admin.py startproject mysite``. This will
create a ``mysite`` directory in your current directory.

.. admonition:: Mac OS X permissions

   If you're using Mac OS X, you may see the message "permission denied" when
   you try to run ``django-admin.py startproject``. This is because, on
   Unix-based systems like OS X, a file must be marked as "executable" before it
   can be run as a program. To do this, open Terminal.app and navigate (using
   the ``cd`` command) to the directory where :ref:`django-admin.py
   <ref-django-admin>` is installed, then run the command
   ``chmod +x django-admin.py``.

.. note::

    You'll need to avoid naming projects after built-in Python or Django
    components. In particular, this means you should avoid using names like
    ``django`` (which will conflict with Django itself) or ``test`` (which
    conflicts with a built-in Python package).

:ref:`django-admin.py <ref-django-admin>` should be on your system path if you
installed Django via ``python setup.py``. If it's not on your path, you can find
it in ``site-packages/django/bin``, where ```site-packages``` is a directory
within your Python installation. Consider symlinking to :ref:`django-admin.py
<ref-django-admin>` from some place on your path, such as
:file:`/usr/local/bin`.

.. admonition:: Where should this code live?

    If your background is in PHP, you're probably used to putting code under the
    Web server's document root (in a place such as ``/var/www``). With Django,
    you don't do that. It's not a good idea to put any of this Python code
    within your Web server's document root, because it risks the possibility
    that people may be able to view your code over the Web. That's not good for
    security.

    Put your code in some directory **outside** of the document root, such as
    :file:`/home/mycode`.

Let's look at what :djadmin:`startproject` created::

    mysite/
        __init__.py
        manage.py
        settings.py
        urls.py

These files are:

    * :file:`__init__.py`: An empty file that tells Python that this directory
      should be considered a Python package. (Read `more about packages`_ in the
      official Python docs if you're a Python beginner.)

    * :file:`manage.py`: A command-line utility that lets you interact with this
      Django project in various ways. You can read all the details about
      :file:`manage.py` in :ref:`ref-django-admin`.

    * :file:`settings.py`: Settings/configuration for this Django project.
      :ref:`topics-settings` will tell you all about how settings work.

    * :file:`urls.py`: The URL declarations for this Django project; a "table of
      contents" of your Django-powered site. You can read more about URLs in
      :ref:`topics-http-urls`.

.. _more about packages: http://docs.python.org/tutorial/modules.html#packages

The development server
----------------------

Let's verify this worked. Change into the :file:`mysite` directory, if you
haven't already, and run the command ``python manage.py runserver``. You'll see
the following output on the command line::

    Validating models...
    0 errors found.

    Django version 1.0, using settings 'mysite.settings'
    Development server is running at http://127.0.0.1:8000/
    Quit the server with CONTROL-C.

You've started the Django development server, a lightweight Web server written
purely in Python. We've included this with Django so you can develop things
rapidly, without having to deal with configuring a production server -- such as
Apache -- until you're ready for production.

Now's a good time to note: DON'T use this server in anything resembling a
production environment. It's intended only for use while developing. (We're in
the business of making Web frameworks, not Web servers.)

Now that the server's running, visit http://127.0.0.1:8000/ with your Web
browser. You'll see a "Welcome to Django" page, in pleasant, light-blue pastel.
It worked!

.. admonition:: Changing the port

    By default, the :djadmin:`runserver` command starts the development server
    on the internal IP at port 8000.

    If you want to change the server's port, pass
    it as a command-line argument. For instance, this command starts the server
    on port 8080:

    .. code-block:: bash

        python manage.py runserver 8080

    If you want to change the server's IP, pass it along with the port. So to
    listen on all public IPs (useful if you want to show off your work on other
    computers), use:

    .. code-block:: bash

        python manage.py runserver 0.0.0.0:8000

    Full docs for the development server can be found in the
    :djadmin:`runserver` reference.

Database setup
--------------

Now, edit :file:`settings.py`. It's a normal Python module with
module-level variables representing Django settings. Change the
following keys in the :setting:`DATABASES` ``'default'`` item to match
your databases connection settings.

    * :setting:`ENGINE` -- Either
      ``'django.db.backends.postgresql_psycopg2'``,
      ``'django.db.backends.mysql'`` or
      ``'django.db.backends.sqlite3'``. Other backends are
      :setting:`also available <ENGINE>`.

    * :setting:`NAME` -- The name of your database. If you're using
      SQLite, the database will be a file on your computer; in that
      case, :setting:`NAME` should be the full absolute path,
      including filename, of that file. If the file doesn't exist, it
      will automatically be created when you synchronize the database
      for the first time (see below).

      When specifying the path, always use forward slashes, even on
      Windows (e.g. ``C:/homes/user/mysite/sqlite3.db``).

    * :setting:`USER` -- Your database username (not used for SQLite).

    * :setting:`PASSWORD` -- Your database password (not used for
      SQLite).

    * :setting:`HOST` -- The host your database is on. Leave this as
      an empty string if your database server is on the same physical
      machine (not used for SQLite).

If you're new to databases, we recommend simply using SQLite (by
setting :setting:`ENGINE` to ``'django.db.backends.sqlite3'``). SQLite
is included as part of Python 2.5 and later, so you won't need to
install anything else.

.. note::

    If you're using PostgreSQL or MySQL, make sure you've created a database by
    this point. Do that with "``CREATE DATABASE database_name;``" within your
    database's interactive prompt.

    If you're using SQLite, you don't need to create anything beforehand - the
    database file will be created automatically when it is needed.

While you're editing :file:`settings.py`, take note of the
:setting:`INSTALLED_APPS` setting towards the bottom of the file. That variable
holds the names of all Django applications that are activated in this Django
instance. Apps can be used in multiple projects, and you can package and
distribute them for use by others in their projects.

By default, :setting:`INSTALLED_APPS` contains the following apps, all of which
come with Django:

    * :mod:`django.contrib.auth` -- An authentication system.

    * :mod:`django.contrib.contenttypes` -- A framework for content types.

    * :mod:`django.contrib.sessions` -- A session framework.

    * :mod:`django.contrib.sites` -- A framework for managing multiple sites
      with one Django installation.

These applications are included by default as a convenience for the common case.

Each of these applications makes use of at least one database table, though,
so we need to create the tables in the database before we can use them. To do
that, run the following command:

.. code-block:: bash

    python manage.py syncdb

The :djadmin:`syncdb` command looks at the :setting:`INSTALLED_APPS` setting and
creates any necessary database tables according to the database settings in your
:file:`settings.py` file. You'll see a message for each database table it
creates, and you'll get a prompt asking you if you'd like to create a superuser
account for the authentication system. Go ahead and do that.

If you're interested, run the command-line client for your database and type
``\dt`` (PostgreSQL), ``SHOW TABLES;`` (MySQL), or ``.schema`` (SQLite) to
display the tables Django created.

.. admonition:: For the minimalists

    Like we said above, the default applications are included for the common
    case, but not everybody needs them. If you don't need any or all of them,
    feel free to comment-out or delete the appropriate line(s) from
    :setting:`INSTALLED_APPS` before running :djadmin:`syncdb`. The
    :djadmin:`syncdb` command will only create tables for apps in
    :setting:`INSTALLED_APPS`.

.. _creating-models:

Creating models
===============

Now that your environment -- a "project" -- is set up, you're set to start
doing work.

Each application you write in Django consists of a Python package, somewhere
on your `Python path`_, that follows a certain convention. Django comes with a
utility that automatically generates the basic directory structure of an app,
so you can focus on writing code rather than creating directories.

.. admonition:: Projects vs. apps

    What's the difference between a project and an app? An app is a Web
    application that does something -- e.g., a weblog system, a database of
    public records or a simple poll app. A project is a collection of
    configuration and apps for a particular Web site. A project can contain
    multiple apps. An app can be in multiple projects.

In this tutorial, we'll create our poll app in the :file:`mysite` directory,
for simplicity. As a consequence, the app will be coupled to the project --
that is, Python code within the poll app will refer to ``mysite.polls``.
Later in this tutorial, we'll discuss decoupling your apps for distribution.

To create your app, make sure you're in the :file:`mysite` directory and type
this command:

.. code-block:: bash

    python manage.py startapp polls

That'll create a directory :file:`polls`, which is laid out like this::

    polls/
        __init__.py
        models.py
        tests.py
        views.py

This directory structure will house the poll application.

The first step in writing a database Web app in Django is to define your models
-- essentially, your database layout, with additional metadata.

.. admonition:: Philosophy

   A model is the single, definitive source of data about your data. It contains
   the essential fields and behaviors of the data you're storing. Django follows
   the :ref:`DRY Principle <dry>`. The goal is to define your data model in one
   place and automatically derive things from it.

In our simple poll app, we'll create two models: polls and choices. A poll has
a question and a publication date. A choice has two fields: the text of the
choice and a vote tally. Each choice is associated with a poll.

These concepts are represented by simple Python classes. Edit the
:file:`polls/models.py` file so it looks like this::

    from django.db import models

    class Poll(models.Model):
        question = models.CharField(max_length=200)
        pub_date = models.DateTimeField('date published')

    class Choice(models.Model):
        poll = models.ForeignKey(Poll)
        choice = models.CharField(max_length=200)
        votes = models.IntegerField()

.. admonition:: Errors about :attr:`~django.db.models.Field.max_length`

   If Django gives you an error message saying that
   :attr:`~django.db.models.Field.max_length` is not a valid argument, you're
   most likely using an old version of Django. (This version of the tutorial is
   written for the latest development version of Django.) If you're using a
   Subversion checkout of Django's development version (see :ref:`the
   installation docs <topics-install>` for more information), you shouldn't have
   any problems.

   If you want to stick with an older version of Django, you'll want to switch
   to `the Django 0.96 tutorial`_, because this tutorial covers several features
   that only exist in the Django development version.

.. _the Django 0.96 tutorial: http://www.djangoproject.com/documentation/0.96/tutorial01/

The code is straightforward. Each model is represented by a class that
subclasses :class:`django.db.models.Model`. Each model has a number of class
variables, each of which represents a database field in the model.

Each field is represented by an instance of a :class:`~django.db.models.Field`
class -- e.g., :class:`~django.db.models.CharField` for character fields and
:class:`~django.db.models.DateTimeField` for datetimes. This tells Django what
type of data each field holds.

The name of each :class:`~django.db.models.Field` instance (e.g. ``question`` or
``pub_date`` ) is the field's name, in machine-friendly format. You'll use this
value in your Python code, and your database will use it as the column name.

You can use an optional first positional argument to a
:class:`~django.db.models.Field` to designate a human-readable name. That's used
in a couple of introspective parts of Django, and it doubles as documentation.
If this field isn't provided, Django will use the machine-readable name. In this
example, we've only defined a human-readable name for ``Poll.pub_date``. For all
other fields in this model, the field's machine-readable name will suffice as
its human-readable name.

Some :class:`~django.db.models.Field` classes have required elements.
:class:`~django.db.models.CharField`, for example, requires that you give it a
:attr:`~django.db.models.Field.max_length`. That's used not only in the database
schema, but in validation, as we'll soon see.

Finally, note a relationship is defined, using
:class:`~django.db.models.ForeignKey`. That tells Django each Choice is related
to a single Poll. Django supports all the common database relationships:
many-to-ones, many-to-manys and one-to-ones.

.. _`Python path`: http://docs.python.org/tutorial/modules.html#the-module-search-path

Activating models
=================

That small bit of model code gives Django a lot of information. With it, Django
is able to:

    * Create a database schema (``CREATE TABLE`` statements) for this app.
    * Create a Python database-access API for accessing Poll and Choice objects.

But first we need to tell our project that the ``polls`` app is installed.

.. admonition:: Philosophy

    Django apps are "pluggable": You can use an app in multiple projects, and
    you can distribute apps, because they don't have to be tied to a given
    Django installation.

Edit the :file:`settings.py` file again, and change the
:setting:`INSTALLED_APPS` setting to include the string ``'mysite.polls'``. So
it'll look like this::

    INSTALLED_APPS = (
        'django.contrib.auth',
        'django.contrib.contenttypes',
        'django.contrib.sessions',
        'django.contrib.sites',
        'mysite.polls'
    )

Now Django knows ``mysite`` includes the ``polls`` app. Let's run another
command:

.. code-block:: bash

    python manage.py sql polls

You should see something similar to the following (the ``CREATE TABLE`` SQL
statements for the polls app):

.. code-block:: sql

    BEGIN;
    CREATE TABLE "polls_poll" (
        "id" serial NOT NULL PRIMARY KEY,
        "question" varchar(200) NOT NULL,
        "pub_date" timestamp with time zone NOT NULL
    );
    CREATE TABLE "polls_choice" (
        "id" serial NOT NULL PRIMARY KEY,
        "poll_id" integer NOT NULL REFERENCES "polls_poll" ("id"),
        "choice" varchar(200) NOT NULL,
        "votes" integer NOT NULL
    );
    COMMIT;

Note the following:

    * The exact output will vary depending on the database you are using.

    * Table names are automatically generated by combining the name of the app
      (``polls``) and the lowercase name of the model -- ``poll`` and
      ``choice``. (You can override this behavior.)

    * Primary keys (IDs) are added automatically. (You can override this, too.)

    * By convention, Django appends ``"_id"`` to the foreign key field name.
      Yes, you can override this, as well.

    * The foreign key relationship is made explicit by a ``REFERENCES``
      statement.

    * It's tailored to the database you're using, so database-specific field
      types such as ``auto_increment`` (MySQL), ``serial`` (PostgreSQL), or
      ``integer primary key`` (SQLite) are handled for you automatically. Same
      goes for quoting of field names -- e.g., using double quotes or single
      quotes. The author of this tutorial runs PostgreSQL, so the example
      output is in PostgreSQL syntax.

    * The :djadmin:`sql` command doesn't actually run the SQL in your database -
      it just prints it to the screen so that you can see what SQL Django thinks
      is required. If you wanted to, you could copy and paste this SQL into your
      database prompt. However, as we will see shortly, Django provides an
      easier way of committing the SQL to the database.

If you're interested, also run the following commands:

    * :djadmin:`python manage.py validate <validate>` -- Checks for any errors
      in the construction of your models.

    * :djadmin:`python manage.py sqlcustom polls <sqlcustom>` -- Outputs any
      :ref:`custom SQL statements <initial-sql>` (such as table modifications or
      constraints) that are defined for the application.

    * :djadmin:`python manage.py sqlclear polls <sqlclear>` -- Outputs the
      necessary ``DROP TABLE`` statements for this app, according to which
      tables already exist in your database (if any).

    * :djadmin:`python manage.py sqlindexes polls <sqlindexes>` -- Outputs the
      ``CREATE INDEX`` statements for this app.

    * :djadmin:`python manage.py sqlall polls <sqlall>` -- A combination of all
      the SQL from the :djadmin:`sql`, :djadmin:`sqlcustom`, and
      :djadmin:`sqlindexes` commands.

Looking at the output of those commands can help you understand what's actually
happening under the hood.

Now, run :djadmin:`syncdb` again to create those model tables in your database:

.. code-block:: bash

    python manage.py syncdb

The :djadmin:`syncdb` command runs the sql from 'sqlall' on your database for
all apps in :setting:`INSTALLED_APPS` that don't already exist in your database.
This creates all the tables, initial data and indexes for any apps you have
added to your project since the last time you ran syncdb. :djadmin:`syncdb` can
be called as often as you like, and it will only ever create the tables that
don't exist.

Read the :ref:`django-admin.py documentation <ref-django-admin>` for full
information on what the ``manage.py`` utility can do.

Playing with the API
====================

Now, let's hop into the interactive Python shell and play around with the free
API Django gives you. To invoke the Python shell, use this command:

.. code-block:: bash

    python manage.py shell

We're using this instead of simply typing "python", because ``manage.py`` sets
up the project's environment for you. "Setting up the environment" involves two
things:

    * Putting ``mysite`` on ``sys.path``. For flexibility, several pieces of
      Django refer to projects in Python dotted-path notation (e.g.
      ``'mysite.polls.models'``). In order for this to work, the ``mysite``
      package has to be on ``sys.path``.

      We've already seen one example of this: the :setting:`INSTALLED_APPS`
      setting is a list of packages in dotted-path notation.

    * Setting the ``DJANGO_SETTINGS_MODULE`` environment variable, which gives
      Django the path to your ``settings.py`` file.

.. admonition:: Bypassing manage.py

    If you'd rather not use ``manage.py``, no problem. Just make sure ``mysite``
    is at the root level on the Python path (i.e., ``import mysite`` works) and
    set the ``DJANGO_SETTINGS_MODULE`` environment variable to
    ``mysite.settings``.

    For more information on all of this, see the :ref:`django-admin.py
    documentation <ref-django-admin>`.

Once you're in the shell, explore the :ref:`database API <topics-db-queries>`::

    >>> from mysite.polls.models import Poll, Choice # Import the model classes we just wrote.

    # No polls are in the system yet.
    >>> Poll.objects.all()
    []

    # Create a new Poll.
    >>> import datetime
    >>> p = Poll(question="What's up?", pub_date=datetime.datetime.now())

    # Save the object into the database. You have to call save() explicitly.
    >>> p.save()

    # Now it has an ID. Note that this might say "1L" instead of "1", depending
    # on which database you're using. That's no biggie; it just means your
    # database backend prefers to return integers as Python long integer
    # objects.
    >>> p.id
    1

    # Access database columns via Python attributes.
    >>> p.question
    "What's up?"
    >>> p.pub_date
    datetime.datetime(2007, 7, 15, 12, 00, 53)

    # Change values by changing the attributes, then calling save().
    >>> p.pub_date = datetime.datetime(2007, 4, 1, 0, 0)
    >>> p.save()

    # objects.all() displays all the polls in the database.
    >>> Poll.objects.all()
    [<Poll: Poll object>]


Wait a minute. ``<Poll: Poll object>`` is, utterly, an unhelpful representation
of this object. Let's fix that by editing the polls model (in the
``polls/models.py`` file) and adding a
:meth:`~django.db.models.Model.__unicode__` method to both ``Poll`` and
``Choice``::

    class Poll(models.Model):
        # ...
        def __unicode__(self):
            return self.question

    class Choice(models.Model):
        # ...
        def __unicode__(self):
            return self.choice

.. admonition:: If :meth:`~django.db.models.Model.__unicode__` doesn't seem to work

   If you add the :meth:`~django.db.models.Model.__unicode__` method to your
   models and don't see any change in how they're represented, you're most
   likely using an old version of Django. (This version of the tutorial is
   written for the latest development version of Django.) If you're using a
   Subversion checkout of Django's development version (see :ref:`the
   installation docs <topics-install>` for more information), you shouldn't have
   any problems.

   If you want to stick with an older version of Django, you'll want to switch
   to `the Django 0.96 tutorial`_, because this tutorial covers several features
   that only exist in the Django development version.

.. _the Django 0.96 tutorial: http://www.djangoproject.com/documentation/0.96/tutorial01/

It's important to add :meth:`~django.db.models.Model.__unicode__` methods to
your models, not only for your own sanity when dealing with the interactive
prompt, but also because objects' representations are used throughout Django's
automatically-generated admin.

.. admonition:: Why :meth:`~django.db.models.Model.__unicode__` and not
                :meth:`~django.db.models.Model.__str__`?

    If you're familiar with Python, you might be in the habit of adding
    :meth:`~django.db.models.Model.__str__` methods to your classes, not
    :meth:`~django.db.models.Model.__unicode__` methods. We use
    :meth:`~django.db.models.Model.__unicode__` here because Django models deal
    with Unicode by default. All data stored in your database is converted to
    Unicode when it's returned.

    Django models have a default :meth:`~django.db.models.Model.__str__` method
    that calls :meth:`~django.db.models.Model.__unicode__` and converts the
    result to a UTF-8 bytestring. This means that ``unicode(p)`` will return a
    Unicode string, and ``str(p)`` will return a normal string, with characters
    encoded as UTF-8.

    If all of this is jibberish to you, just remember to add
    :meth:`~django.db.models.Model.__unicode__` methods to your models. With any
    luck, things should Just Work for you.

Note these are normal Python methods. Let's add a custom method, just for
demonstration::

    import datetime
    # ...
    class Poll(models.Model):
        # ...
        def was_published_today(self):
            return self.pub_date.date() == datetime.date.today()

Note the addition of ``import datetime`` to reference Python's standard
``datetime`` module.

Save these changes and start a new Python interactive shell by running
``python manage.py shell`` again::

    >>> from mysite.polls.models import Poll, Choice

    # Make sure our __unicode__() addition worked.
    >>> Poll.objects.all()
    [<Poll: What's up?>]

    # Django provides a rich database lookup API that's entirely driven by
    # keyword arguments.
    >>> Poll.objects.filter(id=1)
    [<Poll: What's up?>]
    >>> Poll.objects.filter(question__startswith='What')
    [<Poll: What's up?>]

    # Get the poll whose year is 2007.
    >>> Poll.objects.get(pub_date__year=2007)
    <Poll: What's up?>

    >>> Poll.objects.get(id=2)
    Traceback (most recent call last):
        ...
    DoesNotExist: Poll matching query does not exist.

    # Lookup by a primary key is the most common case, so Django provides a
    # shortcut for primary-key exact lookups.
    # The following is identical to Poll.objects.get(id=1).
    >>> Poll.objects.get(pk=1)
    <Poll: What's up?>

    # Make sure our custom method worked.
    >>> p = Poll.objects.get(pk=1)
    >>> p.was_published_today()
    False

    # Give the Poll a couple of Choices. The create call constructs a new
    # choice object, does the INSERT statement, adds the choice to the set
    # of available choices and returns the new Choice object.
    >>> p = Poll.objects.get(pk=1)
    >>> p.choice_set.create(choice='Not much', votes=0)
    <Choice: Not much>
    >>> p.choice_set.create(choice='The sky', votes=0)
    <Choice: The sky>
    >>> c = p.choice_set.create(choice='Just hacking again', votes=0)

    # Choice objects have API access to their related Poll objects.
    >>> c.poll
    <Poll: What's up?>

    # And vice versa: Poll objects get access to Choice objects.
    >>> p.choice_set.all()
    [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]
    >>> p.choice_set.count()
    3

    # The API automatically follows relationships as far as you need.
    # Use double underscores to separate relationships.
    # This works as many levels deep as you want; there's no limit.
    # Find all Choices for any poll whose pub_date is in 2007.
    >>> Choice.objects.filter(poll__pub_date__year=2007)
    [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]

    # Let's delete one of the choices. Use delete() for that.
    >>> c = p.choice_set.filter(choice__startswith='Just hacking')
    >>> c.delete()

For full details on the database API, see our :ref:`Database API reference
<topics-db-queries>`.

When you're comfortable with the API, read :ref:`part 2 of this tutorial
<intro-tutorial02>` to get Django's automatic admin working.