from __future__ import unicode_literals from django.contrib.gis.db.models.functions import ( Area, Distance, Length, Perimeter, Transform, ) from django.contrib.gis.geos import GEOSGeometry, LineString, Point from django.contrib.gis.measure import D # alias for Distance from django.db import connection from django.db.models import F, Q from django.test import TestCase, skipUnlessDBFeature from ..utils import no_oracle, oracle, postgis, spatialite from .models import ( AustraliaCity, CensusZipcode, Interstate, SouthTexasCity, SouthTexasCityFt, SouthTexasInterstate, SouthTexasZipcode, ) @skipUnlessDBFeature("gis_enabled") class DistanceTest(TestCase): fixtures = ['initial'] def setUp(self): # A point we are testing distances with -- using a WGS84 # coordinate that'll be implicitly transformed to that to # the coordinate system of the field, EPSG:32140 (Texas South Central # w/units in meters) self.stx_pnt = GEOSGeometry('POINT (-95.370401017314293 29.704867409475465)', 4326) # Another one for Australia self.au_pnt = GEOSGeometry('POINT (150.791 -34.4919)', 4326) def get_names(self, qs): cities = [c.name for c in qs] cities.sort() return cities def test_init(self): """ Test initialization of distance models. """ self.assertEqual(9, SouthTexasCity.objects.count()) self.assertEqual(9, SouthTexasCityFt.objects.count()) self.assertEqual(11, AustraliaCity.objects.count()) self.assertEqual(4, SouthTexasZipcode.objects.count()) self.assertEqual(4, CensusZipcode.objects.count()) self.assertEqual(1, Interstate.objects.count()) self.assertEqual(1, SouthTexasInterstate.objects.count()) @skipUnlessDBFeature("supports_dwithin_lookup") def test_dwithin(self): """ Test the `dwithin` lookup type. """ # Distances -- all should be equal (except for the # degree/meter pair in au_cities, that's somewhat # approximate). tx_dists = [(7000, 22965.83), D(km=7), D(mi=4.349)] au_dists = [(0.5, 32000), D(km=32), D(mi=19.884)] # Expected cities for Australia and Texas. tx_cities = ['Downtown Houston', 'Southside Place'] au_cities = ['Mittagong', 'Shellharbour', 'Thirroul', 'Wollongong'] # Performing distance queries on two projected coordinate systems one # with units in meters and the other in units of U.S. survey feet. for dist in tx_dists: if isinstance(dist, tuple): dist1, dist2 = dist else: dist1 = dist2 = dist qs1 = SouthTexasCity.objects.filter(point__dwithin=(self.stx_pnt, dist1)) qs2 = SouthTexasCityFt.objects.filter(point__dwithin=(self.stx_pnt, dist2)) for qs in qs1, qs2: self.assertEqual(tx_cities, self.get_names(qs)) # Now performing the `dwithin` queries on a geodetic coordinate system. for dist in au_dists: if isinstance(dist, D) and not oracle: type_error = True else: type_error = False if isinstance(dist, tuple): if oracle or spatialite: # Result in meters dist = dist[1] else: # Result in units of the field dist = dist[0] # Creating the query set. qs = AustraliaCity.objects.order_by('name') if type_error: # A ValueError should be raised on PostGIS when trying to pass # Distance objects into a DWithin query using a geodetic field. with self.assertRaises(ValueError): AustraliaCity.objects.filter(point__dwithin=(self.au_pnt, dist)).count() else: self.assertListEqual(au_cities, self.get_names(qs.filter(point__dwithin=(self.au_pnt, dist)))) @skipUnlessDBFeature("supports_distances_lookups") def test_distance_lookups(self): """ Test the `distance_lt`, `distance_gt`, `distance_lte`, and `distance_gte` lookup types. """ # Retrieving the cities within a 20km 'donut' w/a 7km radius 'hole' # (thus, Houston and Southside place will be excluded as tested in # the `test02_dwithin` above). qs1 = SouthTexasCity.objects.filter(point__distance_gte=(self.stx_pnt, D(km=7))).filter( point__distance_lte=(self.stx_pnt, D(km=20)), ) # Oracle 11 incorrectly thinks it is not projected. if oracle: dist_qs = (qs1,) else: qs2 = SouthTexasCityFt.objects.filter(point__distance_gte=(self.stx_pnt, D(km=7))).filter( point__distance_lte=(self.stx_pnt, D(km=20)), ) dist_qs = (qs1, qs2) for qs in dist_qs: cities = self.get_names(qs) self.assertEqual(cities, ['Bellaire', 'Pearland', 'West University Place']) # Doing a distance query using Polygons instead of a Point. z = SouthTexasZipcode.objects.get(name='77005') qs = SouthTexasZipcode.objects.exclude(name='77005').filter(poly__distance_lte=(z.poly, D(m=275))) self.assertEqual(['77025', '77401'], self.get_names(qs)) # If we add a little more distance 77002 should be included. qs = SouthTexasZipcode.objects.exclude(name='77005').filter(poly__distance_lte=(z.poly, D(m=300))) self.assertEqual(['77002', '77025', '77401'], self.get_names(qs)) @skipUnlessDBFeature("supports_distances_lookups", "supports_distance_geodetic") def test_geodetic_distance_lookups(self): """ Test distance lookups on geodetic coordinate systems. """ # Line is from Canberra to Sydney. Query is for all other cities within # a 100km of that line (which should exclude only Hobart & Adelaide). line = GEOSGeometry('LINESTRING(144.9630 -37.8143,151.2607 -33.8870)', 4326) dist_qs = AustraliaCity.objects.filter(point__distance_lte=(line, D(km=100))) expected_cities = [ 'Batemans Bay', 'Canberra', 'Hillsdale', 'Melbourne', 'Mittagong', 'Shellharbour', 'Sydney', 'Thirroul', 'Wollongong', ] if spatialite: # SpatiaLite is less accurate and returns 102.8km for Batemans Bay. expected_cities.pop(0) self.assertEqual(expected_cities, self.get_names(dist_qs)) # Too many params (4 in this case) should raise a ValueError. queryset = AustraliaCity.objects.filter(point__distance_lte=('POINT(5 23)', D(km=100), 'spheroid', '4')) with self.assertRaises(ValueError): len(queryset) # Not enough params should raise a ValueError. with self.assertRaises(ValueError): len(AustraliaCity.objects.filter(point__distance_lte=('POINT(5 23)',))) # Getting all cities w/in 550 miles of Hobart. hobart = AustraliaCity.objects.get(name='Hobart') qs = AustraliaCity.objects.exclude(name='Hobart').filter(point__distance_lte=(hobart.point, D(mi=550))) cities = self.get_names(qs) self.assertEqual(cities, ['Batemans Bay', 'Canberra', 'Melbourne']) # Cities that are either really close or really far from Wollongong -- # and using different units of distance. wollongong = AustraliaCity.objects.get(name='Wollongong') d1, d2 = D(yd=19500), D(nm=400) # Yards (~17km) & Nautical miles. # Normal geodetic distance lookup (uses `distance_sphere` on PostGIS. gq1 = Q(point__distance_lte=(wollongong.point, d1)) gq2 = Q(point__distance_gte=(wollongong.point, d2)) qs1 = AustraliaCity.objects.exclude(name='Wollongong').filter(gq1 | gq2) # Geodetic distance lookup but telling GeoDjango to use `distance_spheroid` # instead (we should get the same results b/c accuracy variance won't matter # in this test case). querysets = [qs1] if connection.features.has_DistanceSpheroid_function: gq3 = Q(point__distance_lte=(wollongong.point, d1, 'spheroid')) gq4 = Q(point__distance_gte=(wollongong.point, d2, 'spheroid')) qs2 = AustraliaCity.objects.exclude(name='Wollongong').filter(gq3 | gq4) querysets.append(qs2) for qs in querysets: cities = self.get_names(qs) self.assertEqual(cities, ['Adelaide', 'Hobart', 'Shellharbour', 'Thirroul']) @skipUnlessDBFeature("supports_distances_lookups") def test_distance_lookups_with_expression_rhs(self): qs = SouthTexasCity.objects.filter( point__distance_lte=(self.stx_pnt, F('radius')), ).order_by('name') self.assertEqual( self.get_names(qs), ['Bellaire', 'Downtown Houston', 'Southside Place', 'West University Place'] ) # With a combined expression qs = SouthTexasCity.objects.filter( point__distance_lte=(self.stx_pnt, F('radius') * 2), ).order_by('name') self.assertEqual(len(qs), 5) self.assertIn('Pearland', self.get_names(qs)) # With spheroid param if connection.features.supports_distance_geodetic: hobart = AustraliaCity.objects.get(name='Hobart') qs = AustraliaCity.objects.filter( point__distance_lte=(hobart.point, F('radius') * 70, 'spheroid'), ).order_by('name') self.assertEqual(self.get_names(qs), ['Canberra', 'Hobart', 'Melbourne']) ''' ============================= Distance functions on PostGIS ============================= | Projected Geometry | Lon/lat Geometry | Geography (4326) ST_Distance(geom1, geom2) | OK (meters) | :-( (degrees) | OK (meters) ST_Distance(geom1, geom2, use_spheroid=False) | N/A | N/A | OK (meters), less accurate, quick Distance_Sphere(geom1, geom2) | N/A | OK (meters) | N/A Distance_Spheroid(geom1, geom2, spheroid) | N/A | OK (meters) | N/A ST_Perimeter(geom1) | OK | :-( (degrees) | OK ================================ Distance functions on SpatiaLite ================================ | Projected Geometry | Lon/lat Geometry ST_Distance(geom1, geom2) | OK (meters) | N/A ST_Distance(geom1, geom2, use_ellipsoid=True) | N/A | OK (meters) ST_Distance(geom1, geom2, use_ellipsoid=False) | N/A | OK (meters), less accurate, quick Perimeter(geom1) | OK | :-( (degrees) ''' # NOQA @skipUnlessDBFeature("gis_enabled") class DistanceFunctionsTests(TestCase): fixtures = ['initial'] @skipUnlessDBFeature("has_Area_function") def test_area(self): # Reference queries: # SELECT ST_Area(poly) FROM distapp_southtexaszipcode; area_sq_m = [5437908.90234375, 10183031.4389648, 11254471.0073242, 9881708.91772461] # Tolerance has to be lower for Oracle tol = 2 for i, z in enumerate(SouthTexasZipcode.objects.annotate(area=Area('poly')).order_by('name')): self.assertAlmostEqual(area_sq_m[i], z.area.sq_m, tol) @skipUnlessDBFeature("has_Distance_function") def test_distance_simple(self): """ Test a simple distance query, with projected coordinates and without transformation. """ lagrange = GEOSGeometry('POINT(805066.295722839 4231496.29461335)', 32140) houston = SouthTexasCity.objects.annotate(dist=Distance('point', lagrange)).order_by('id').first() tol = 2 if oracle else 5 self.assertAlmostEqual( houston.dist.m, 147075.069813, tol ) @skipUnlessDBFeature("has_Distance_function", "has_Transform_function") def test_distance_projected(self): """ Test the `Distance` function on projected coordinate systems. """ # The point for La Grange, TX lagrange = GEOSGeometry('POINT(-96.876369 29.905320)', 4326) # Reference distances in feet and in meters. Got these values from # using the provided raw SQL statements. # SELECT ST_Distance(point, ST_Transform(ST_GeomFromText('POINT(-96.876369 29.905320)', 4326), 32140)) # FROM distapp_southtexascity; m_distances = [147075.069813, 139630.198056, 140888.552826, 138809.684197, 158309.246259, 212183.594374, 70870.188967, 165337.758878, 139196.085105] # SELECT ST_Distance(point, ST_Transform(ST_GeomFromText('POINT(-96.876369 29.905320)', 4326), 2278)) # FROM distapp_southtexascityft; # Oracle 11 thinks this is not a projected coordinate system, so it's # not tested. ft_distances = [482528.79154625, 458103.408123001, 462231.860397575, 455411.438904354, 519386.252102563, 696139.009211594, 232513.278304279, 542445.630586414, 456679.155883207] # Testing using different variations of parameters and using models # with different projected coordinate systems. dist1 = SouthTexasCity.objects.annotate(distance=Distance('point', lagrange)).order_by('id') if oracle: dist_qs = [dist1] else: dist2 = SouthTexasCityFt.objects.annotate(distance=Distance('point', lagrange)).order_by('id') dist_qs = [dist1, dist2] # Original query done on PostGIS, have to adjust AlmostEqual tolerance # for Oracle. tol = 2 if oracle else 5 # Ensuring expected distances are returned for each distance queryset. for qs in dist_qs: for i, c in enumerate(qs): self.assertAlmostEqual(m_distances[i], c.distance.m, tol) self.assertAlmostEqual(ft_distances[i], c.distance.survey_ft, tol) @skipUnlessDBFeature("has_Distance_function", "supports_distance_geodetic") def test_distance_geodetic(self): """ Test the `Distance` function on geodetic coordinate systems. """ # Testing geodetic distance calculation with a non-point geometry # (a LineString of Wollongong and Shellharbour coords). ls = LineString(((150.902, -34.4245), (150.87, -34.5789)), srid=4326) # Reference query: # SELECT ST_distance_sphere(point, ST_GeomFromText('LINESTRING(150.9020 -34.4245,150.8700 -34.5789)', 4326)) # FROM distapp_australiacity ORDER BY name; distances = [1120954.92533513, 140575.720018241, 640396.662906304, 60580.9693849269, 972807.955955075, 568451.8357838, 40435.4335201384, 0, 68272.3896586844, 12375.0643697706, 0] qs = AustraliaCity.objects.annotate(distance=Distance('point', ls)).order_by('name') for city, distance in zip(qs, distances): # Testing equivalence to within a meter (kilometer on SpatiaLite). tol = -3 if spatialite else 0 self.assertAlmostEqual(distance, city.distance.m, tol) @skipUnlessDBFeature("has_Distance_function", "supports_distance_geodetic") def test_distance_geodetic_spheroid(self): tol = 2 if oracle else 4 # Got the reference distances using the raw SQL statements: # SELECT ST_distance_spheroid(point, ST_GeomFromText('POINT(151.231341 -33.952685)', 4326), # 'SPHEROID["WGS 84",6378137.0,298.257223563]') FROM distapp_australiacity WHERE (NOT (id = 11)); # SELECT ST_distance_sphere(point, ST_GeomFromText('POINT(151.231341 -33.952685)', 4326)) # FROM distapp_australiacity WHERE (NOT (id = 11)); st_distance_sphere spheroid_distances = [ 60504.0628957201, 77023.9489850262, 49154.8867574404, 90847.4358768573, 217402.811919332, 709599.234564757, 640011.483550888, 7772.00667991925, 1047861.78619339, 1165126.55236034, ] sphere_distances = [ 60580.9693849267, 77144.0435286473, 49199.4415344719, 90804.7533823494, 217713.384600405, 709134.127242793, 639828.157159169, 7786.82949717788, 1049204.06569028, 1162623.7238134, ] # Testing with spheroid distances first. hillsdale = AustraliaCity.objects.get(name='Hillsdale') qs = AustraliaCity.objects.exclude(id=hillsdale.id).annotate( distance=Distance('point', hillsdale.point, spheroid=True) ).order_by('id') for i, c in enumerate(qs): self.assertAlmostEqual(spheroid_distances[i], c.distance.m, tol) if postgis or spatialite: # PostGIS uses sphere-only distances by default, testing these as well. qs = AustraliaCity.objects.exclude(id=hillsdale.id).annotate( distance=Distance('point', hillsdale.point) ).order_by('id') for i, c in enumerate(qs): self.assertAlmostEqual(sphere_distances[i], c.distance.m, tol) @no_oracle # Oracle already handles geographic distance calculation. @skipUnlessDBFeature("has_Distance_function", 'has_Transform_function') def test_distance_transform(self): """ Test the `Distance` function used with `Transform` on a geographic field. """ # We'll be using a Polygon (created by buffering the centroid # of 77005 to 100m) -- which aren't allowed in geographic distance # queries normally, however our field has been transformed to # a non-geographic system. z = SouthTexasZipcode.objects.get(name='77005') # Reference query: # SELECT ST_Distance(ST_Transform("distapp_censuszipcode"."poly", 32140), # ST_GeomFromText('', 32140)) # FROM "distapp_censuszipcode"; dists_m = [3553.30384972258, 1243.18391525602, 2186.15439472242] # Having our buffer in the SRID of the transformation and of the field # -- should get the same results. The first buffer has no need for # transformation SQL because it is the same SRID as what was given # to `transform()`. The second buffer will need to be transformed, # however. buf1 = z.poly.centroid.buffer(100) buf2 = buf1.transform(4269, clone=True) ref_zips = ['77002', '77025', '77401'] for buf in [buf1, buf2]: qs = CensusZipcode.objects.exclude(name='77005').annotate( distance=Distance(Transform('poly', 32140), buf) ).order_by('name') self.assertEqual(ref_zips, sorted([c.name for c in qs])) for i, z in enumerate(qs): self.assertAlmostEqual(z.distance.m, dists_m[i], 5) @skipUnlessDBFeature("has_Distance_function") def test_distance_order_by(self): qs = SouthTexasCity.objects.annotate(distance=Distance('point', Point(3, 3, srid=32140))).order_by( 'distance' ).values_list('name', flat=True).filter(name__in=('San Antonio', 'Pearland')) self.assertSequenceEqual(qs, ['San Antonio', 'Pearland']) @skipUnlessDBFeature("has_Length_function") def test_length(self): """ Test the `Length` function. """ # Reference query (should use `length_spheroid`). # SELECT ST_length_spheroid(ST_GeomFromText('', 4326) 'SPHEROID["WGS 84",6378137,298.257223563, # AUTHORITY["EPSG","7030"]]'); len_m1 = 473504.769553813 len_m2 = 4617.668 if connection.features.supports_length_geodetic: qs = Interstate.objects.annotate(length=Length('path')) tol = 2 if oracle else 3 self.assertAlmostEqual(len_m1, qs[0].length.m, tol) # TODO: test with spheroid argument (True and False) else: # Does not support geodetic coordinate systems. with self.assertRaises(NotImplementedError): list(Interstate.objects.annotate(length=Length('path'))) # Now doing length on a projected coordinate system. i10 = SouthTexasInterstate.objects.annotate(length=Length('path')).get(name='I-10') self.assertAlmostEqual(len_m2, i10.length.m, 2) self.assertTrue( SouthTexasInterstate.objects.annotate(length=Length('path')).filter(length__gt=4000).exists() ) @skipUnlessDBFeature("has_Perimeter_function") def test_perimeter(self): """ Test the `Perimeter` function. """ # Reference query: # SELECT ST_Perimeter(distapp_southtexaszipcode.poly) FROM distapp_southtexaszipcode; perim_m = [18404.3550889361, 15627.2108551001, 20632.5588368978, 17094.5996143697] tol = 2 if oracle else 7 qs = SouthTexasZipcode.objects.annotate(perimeter=Perimeter('poly')).order_by('name') for i, z in enumerate(qs): self.assertAlmostEqual(perim_m[i], z.perimeter.m, tol) # Running on points; should return 0. qs = SouthTexasCity.objects.annotate(perim=Perimeter('point')) for city in qs: self.assertEqual(0, city.perim.m) @skipUnlessDBFeature("has_Perimeter_function") def test_perimeter_geodetic(self): # Currently only Oracle supports calculating the perimeter on geodetic # geometries (without being transformed). qs1 = CensusZipcode.objects.annotate(perim=Perimeter('poly')) if connection.features.supports_perimeter_geodetic: self.assertAlmostEqual(qs1[0].perim.m, 18406.3818954314, 3) else: with self.assertRaises(NotImplementedError): list(qs1) # But should work fine when transformed to projected coordinates qs2 = CensusZipcode.objects.annotate(perim=Perimeter(Transform('poly', 32140))).filter(name='77002') self.assertAlmostEqual(qs2[0].perim.m, 18404.355, 3) @skipUnlessDBFeature("supports_null_geometries", "has_Area_function", "has_Distance_function") def test_measurement_null_fields(self): """ Test the measurement functions on fields with NULL values. """ # Creating SouthTexasZipcode w/NULL value. SouthTexasZipcode.objects.create(name='78212') # Performing distance/area queries against the NULL PolygonField, # and ensuring the result of the operations is None. htown = SouthTexasCity.objects.get(name='Downtown Houston') z = SouthTexasZipcode.objects.annotate( distance=Distance('poly', htown.point), area=Area('poly') ).get(name='78212') self.assertIsNone(z.distance) self.assertIsNone(z.area)