1
0
mirror of https://github.com/django/django.git synced 2025-01-22 16:19:35 +00:00

Add reference documentation for operations and stubs for schemaeditor.

This commit is contained in:
Andrew Godwin 2014-02-12 18:53:35 +00:00
parent bad9456b9c
commit dbe82e74f2
4 changed files with 514 additions and 2 deletions

View File

@ -73,7 +73,9 @@ manipulating the data of your Web application. Learn more about it below:
:doc:`Accessing related objects <ref/models/relations>`
* **Migrations:**
:doc:`Introduction to Migrations<topics/migrations>`
:doc:`Introduction to Migrations<topics/migrations>` |
:doc:`Operations reference <ref/migration-operations>` |
:doc:`SchemaEditor <ref/schema-editor>`
* **Advanced:**
:doc:`Managers <topics/db/managers>` |

View File

@ -0,0 +1,320 @@
====================
Migration Operations
====================
Migration files are composed of one or more Operations, objects that
declaratively record what the migration should do to your database.
Django also uses these Operation objects to work out what your models
looked like historically, and to calculate what changes you've made to
your models since the last migration so it can automatically write
your migrations; that's why they're declarative, as it means Django can
easily load them all into memory and run through them without touching
the database to work out what your project should look like.
There are also more specialised Operation objects which are for things like
:ref:`data migrations <data-migrations>` and for advanced manual database
manipulation. You can also write your own Operation classes if you want
to encapsulate a custom change you commonly make.
If you need an empty migration file to write your own Operation objects
into, just use ``python manage.py makemigrations --empty yourappname``,
but be aware that manually adding schema-altering operations can confuse the
migration autodetector and make resulting runs of ``makemigrations`` output
incorrect code.
All of the core Django operations are available from the
``django.db.migrations.operations`` module.
Schema Operations
=================
CreateModel
-----------
::
CreateModel(name, fields, options=None, bases=None)
Creates a new model in the project history and a corresponding table in the
database to match it.
``name`` is the model name, as would be written in the ``models.py`` file.
``fields`` is a list of 2-tuples of ``(field_name, field_instance)``.
The field instance should be an unbound field (so just ``models.CharField()``,
rather than a field takes from another model).
``options`` is an optional dictionary of values from the model's ``Meta`` class.
``bases`` is an optional list of other classes to have this model inheirit from;
it can contain both class objects as well as strings in the format
``"appname.ModelName"`` if you want to depend on another model (so you inherit
from the historical version). If it's not supplied, it defaults to just
inheriting from the standard ``models.Model``.
DeleteModel
-----------
::
DeleteModel(name)
Deletes the model from the project history and its table from the database.
RenameModel
-----------
::
RenameModel(old_name, new_name)
Renames the model from an old name to a new one.
You may have to manually add
this if you change the model's name and quite a few of its fields at once; to
the autodetector, this will look like you deleted a model with the old name
and added a new one with a different name, and the migration it creates will
lose any data in the old table.
AlterModelTable
---------------
::
AlterModelTable(name, table)
Changes the model's table name (the ``db_table`` option on the ``Meta`` subclass)
AlterUniqueTogether
-------------------
::
AlterUniqueTogether(name, unique_together)
Changes the model's set of unique constraints
(the ``unique_together`` option on the ``Meta`` subclass)
AlterIndexTogether
------------------
::
AlterIndexTogether(name, index_together)
Changes the model's set of custom indexes
(the ``index_together`` option on the ``Meta`` subclass)
AddField
--------
::
AddField(model_name, name, field, preserve_default=True)
Adds a field to a model. ``model_name`` is the model's name, ``name`` is
the field's name, and ``field`` is an unbound Field instance (the thing
you would put in the field declaration in ``models.py`` - for example,
``models.IntegerField(null=True)``.
The ``preserve_default`` argument indicates whether the field's default
value is permanent and should be baked into the project state (``True``),
or if it is temporary and just for this migration (``False``) - usually
because the migration is adding a non-nullable field to a table and needs
a default value to put into existing rows. It does not effect the behaviour
of setting defaults in the database directly - Django never sets database
defaults, and always applies them in the Django ORM code.
RemoveField
-----------
::
RemoveField(model_name, name)
Removes a field from a model.
Bear in mind that when reversed this is actually adding a field to a model;
if the field is not nullable this may make this operation irreversible (apart
from any data loss, which of course is irreversible).
AlterField
----------
::
AlterField(model_name, name, field)
Alters a field's definition, including changes to its type, ``null``, ``unique``,
``db_column`` and other field attributes.
Note that not all changes are possible on all databases - for example, you
cannot change a text-type field like ``models.TextField()`` into a number-type
field like ``models.IntegerField()`` on most databases.
RenameField
-----------
::
RenameField(model_name, old_name, new_name)
Changes a field's name (and, unless ``db_column`` is set, its column name).
Special Operations
==================
RunSQL
------
::
RunSQL(sql, reverse_sql=None, state_operations=None, multiple=False)
Allows runnning of arbitrary SQL on the database - useful for more advanced
features of database backends that Django doesn't support directly, like
partial indexes.
``sql``, and ``reverse_sql`` if provided, should be strings of SQL to run on the
database. They will be passed to the database as a single SQL statement unless
``multiple`` is set to ``True``, in which case they will be split into separate
statements manually by the operation before being passed through.
In some extreme cases, the built-in statement splitter may not be able to split
correctly, in which case you should manually split the SQL into multiple calls
to ``RunSQL``.
The ``state_operations`` argument is so you can supply operations that are
equivalent to the SQL in terms of project state; for example, if you are
manually creating a column, you should pass in a list containing an ``AddField``
operation here so that the autodetector still has an up-to-date state of the
model (otherwise, when you next run ``makemigrations``, it won't see any
operation that adds that field and so will try to run it again).
.. _operation-run-python:
RunPython
---------
::
RunPython(code, reverse_code=None)
Runs custom Python code in a historical context. ``code`` (and ``reverse_code``
if supplied) should be callable objects that accept two arguments; the first is
an instance of ``django.apps.registry.Apps`` containing historical models that
match the operation's place in the project history, and the second is an
instance of SchemaEditor.
You are advised to write the code as a separate function above the ``Migration``
class in the migration file, and just pass it to ``RunPython``.
SeparateDatabaseAndState
------------------------
::
SeparateDatabaseAndState(database_operations=None, state_operations=None)
A highly specalist operation that let you mix and match the database
(schema-changing) and state (autodetector-powering) aspects of operations.
It accepts two list of operations, and when asked to apply state will use the
state list, and when asked to apply changes to the database will use the database
list. Do not use this operation unless you're very sure you know what you're doing.
Writing your own
================
Operations have a relatively simple API, and they're designed so that you can
easily write your own to supplement the built-in Django ones. The basic structure
of an Operation looks like this::
from django.db.migrations.operations.base import Operation
class MyCustomOperation(Operation):
# If this is False, it means that this operation will be ignored by
# sqlmigrate; if true, it will be run and the SQL collected for its output.
reduces_to_sql = False
# If this is False, Django will refuse to reverse past this operation.
reversible = False
def __init__(self, arg1, arg2):
# Operations are usually instantiated with arguments in migration
# files. Store the values of them on self for later use.
pass
def state_forwards(self, app_label, state):
# The Operation should take the 'state' parameter (an instance of
# django.db.migrations.state.ProjectState) and mutate it to match
# any schema changes that have occurred.
pass
def database_forwards(self, app_label, schema_editor, from_state, to_state):
# The Operation should use schema_editor to apply any changes it
# wants to make to the database.
pass
def database_backwards(self, app_label, schema_editor, from_state, to_state):
# If reversible is True, this is called when the operation is reversed.
pass
def describe(self):
# This is used to describe what the operation does in console output.
return "Custom Operation"
You can take this template and work from it, though we suggest looking at the
built-in Django operations in ``django.db.migrations.operations`` - they're
easy to read and cover a lot of the example usage of semi-internal aspects
of the migration framework like ``ProjectState`` and the patterns used to get
historical models.
Some things to note:
* You don't need to learn too much about ProjectState to just write simple
migrations; just know that it has a ``.render()`` method that turns it into
an app registry (which you can then call ``get_model`` on).
* ``database_forwards`` and ``database_backwards`` both get two states passed
to them; these just represent the difference the ``state_forwards`` method
would have applied, but are given to you for convenience and speed reasons.
* ``to_state`` in the database_backwards method is the *older* state; that is,
the one that will be the current state once the migration has finished reversing.
* You might see implementations of ``references_model`` on the built-in
operations; this is part of the autodetection code and does not matter for
custom operations.
As a simple example, let's make an operation that loads PostgreSQL extensions
(which contain some of PostgreSQL's more exciting features). It's simple enough;
there's no model state changes, and all it does is run one command::
from django.db.migrations.operations.base import Operation
class LoadExtension(Operation):
reversible = True
def __init__(self, name):
self.name = name
def state_forwards(self, app_label, state):
pass
def database_forwards(self, app_label, schema_editor, from_state, to_state):
schema_editor.execute("CREATE EXTENSION IF NOT EXISTS %s" % self.name)
def database_backwards(self, app_label, schema_editor, from_state, to_state):
schema_editor.execute("DROP EXTENSION %s" % self.name)
def describe(self):
return "Creates extension %s" % self.name

112
docs/ref/schema-editor.txt Normal file
View File

@ -0,0 +1,112 @@
============
SchemaEditor
============
Django's migration system is split into two parts; the logic for calculating
and storing what operations should be run (``django.db.migrations``), and the
database abstraction layer that turns things like "create a model" or
"delete a field" into SQL - which is the job of the ``SchemaEditor``.
It's unlikely that you will want to interact directly with ``SchemaEditor`` as
a normal developer using Django, but if you want to write your own migration
system, or have more advanced needs, it's a lot nicer than writing SQL.
Each database backend in Django supplies its own version of ``SchemaEditor``,
and it's always accessible via the ``connection.schema_editor()`` context
manager::
with connection.schema_editor() as schema_editor:
schema_editor.delete_model(MyModel)
It must be used via the context manager as this allows it to manage things
like transactions and deferred SQL (like creating ``ForeignKey`` constraints).
It exposes all possible operations as methods, that should be called in
the order you wish changes to be applied. Some possible operations or types
of change are not possible on all databases - for example, MyISAM does not
support foreign key constraints.
Methods
=======
execute
-------
::
execute(sql, params=[])
Executes the SQL statement passed in, with parameters if supplied. This
is a simple wrapper around the normal database cursors that allows
capture of the SQL to a ``.sql`` file if the user wishes.
create_model
------------
::
create_model(model)
delete_model
------------
::
delete_model(model)
alter_unique_together
---------------------
::
alter_unique_together(model, old_unique_together, new_unique_together)
alter_index_together
--------------------
::
alter_index_together(model, old_index_together, new_index_together)
alter_db_table
--------------
::
alter_db_table(model, old_db_table, new_db_table)
alter_db_tablespace
-------------------
::
alter_db_tablespace(model, old_db_tablespace, new_db_tablespace)
add_field
---------
::
add_field(model, field)
remove_field
------------
::
remove_field(model, field)
alter_field
------------
::
alter_field(model, old_field, new_field, strict=False)

View File

@ -60,7 +60,7 @@ Backend Support
Migrations are supported on all backends that Django ships with, as well
as any third-party backends if they have programmed in support for schema
alteration (done via the ``SchemaEditor`` class).
alteration (done via the :doc:`SchemaEditor </ref/schema-editor>` class).
However, some databases are more capable than others when it comes to
schema migrations; some of the caveats are covered below.
@ -311,6 +311,84 @@ from these base classes inherit normally, so if you absolutely need access
to these you can opt to move them into a superclass.
.. _data-migrations:
Data Migrations
---------------
As well as changing the database schema, you can also use migrations to change
the data in the database itself, in conjunction with the schema if you want.
Migrations that alter data are usually called "data migrations"; they're best
written as separate migrations, sitting alongside your schema migrations.
Django can't automatically generate data migrations for you, as it does with
schema migrations, but it's not very hard to write them. Migration files in
Django are made up of :doc:`Operations </ref/migration-operations>`, and
the main operation you use for data migrations is
:ref:`RunPython <operation-run-python>`.
To start, make an empty migration file you can work from (Django will put
the file in the right place, suggest a name, and add dependencies for you)::
python manage.py makemigrations --empty yourappname
Then, open up the file; it should look something like this::
# encoding: utf8
from django.db import models, migrations
class Migration(migrations.Migration):
dependencies = [
('yourappname', '0001_initial'),
]
operations = [
]
Now, all you need to do is create a new function and have RunPython use it.
RunPython expects a callable as its argument which takes two arguments - the
first is an :doc:`app registry </ref/applications/>` that has the historical
versions of all your models loaded into it to match where in your history the
migration sits, and the second is a :doc:`SchemaEditor </ref/schema-editor>`,
which you can use to manually effect database schema changes (but beware,
doing this can confuse the migration autodetector!)
Let's write a simple migration that populates our new ``name`` field with the
combined values of ``first_name`` and ``last_name`` (we've come to our senses
and realised that not everyone has first and last names). All we
need to do is use the historical model and iterate over the rows::
# encoding: utf8
from django.db import models, migrations
def combine_names(apps, schema_editor):
# We can't import the Person model directly as it may be a newer
# version than this migration expects. We use the historical version.
Person = apps.get_model("yourappname", "Person")
for person in Person.objects.all():
person.name = "%s %s" % (person.first_name, person.last_name)
person.save()
class Migration(migrations.Migration):
dependencies = [
('yourappname', '0001_initial'),
]
operations = [
migrations.RunPython(combine_names),
]
Once that's done, we can just run ``python manage.py migrate`` as normal and
the data migration will run in place alongside other migrations.
If you're interested in the more advanced migration operations, or want
to be able to write your own, see our
:doc:`migration operations reference </ref/migration-operations>`.
.. _migration-serializing:
Serializing values