2017-09-18 13:42:29 +00:00
|
|
|
import datetime
|
2020-09-22 13:01:52 +00:00
|
|
|
from decimal import Decimal
|
2020-12-10 17:00:57 +00:00
|
|
|
from unittest import mock
|
2017-09-18 13:42:29 +00:00
|
|
|
|
|
|
|
from django.core.exceptions import FieldError
|
|
|
|
from django.db import NotSupportedError, connection
|
|
|
|
from django.db.models import (
|
2020-10-14 10:21:25 +00:00
|
|
|
Avg,
|
|
|
|
Case,
|
2022-08-10 12:22:01 +00:00
|
|
|
Count,
|
2020-10-14 10:21:25 +00:00
|
|
|
F,
|
|
|
|
IntegerField,
|
|
|
|
Max,
|
|
|
|
Min,
|
|
|
|
OuterRef,
|
|
|
|
Q,
|
|
|
|
RowRange,
|
|
|
|
Subquery,
|
|
|
|
Sum,
|
|
|
|
Value,
|
|
|
|
ValueRange,
|
|
|
|
When,
|
|
|
|
Window,
|
|
|
|
WindowFrame,
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
2020-10-14 10:21:25 +00:00
|
|
|
from django.db.models.fields.json import KeyTextTransform, KeyTransform
|
2017-09-18 13:42:29 +00:00
|
|
|
from django.db.models.functions import (
|
2020-10-14 10:21:25 +00:00
|
|
|
Cast,
|
|
|
|
CumeDist,
|
|
|
|
DenseRank,
|
|
|
|
ExtractYear,
|
|
|
|
FirstValue,
|
|
|
|
Lag,
|
|
|
|
LastValue,
|
|
|
|
Lead,
|
2017-09-18 13:42:29 +00:00
|
|
|
NthValue,
|
|
|
|
Ntile,
|
|
|
|
PercentRank,
|
|
|
|
Rank,
|
|
|
|
RowNumber,
|
|
|
|
Upper,
|
|
|
|
)
|
2022-08-10 12:22:01 +00:00
|
|
|
from django.db.models.lookups import Exact
|
2017-09-18 13:42:29 +00:00
|
|
|
from django.test import SimpleTestCase, TestCase, skipUnlessDBFeature
|
2022-11-10 02:55:47 +00:00
|
|
|
from django.test.utils import CaptureQueriesContext
|
2017-09-18 13:42:29 +00:00
|
|
|
|
2022-08-10 12:22:01 +00:00
|
|
|
from .models import Classification, Detail, Employee, PastEmployeeDepartment
|
2017-09-18 13:42:29 +00:00
|
|
|
|
|
|
|
|
|
|
|
@skipUnlessDBFeature("supports_over_clause")
|
|
|
|
class WindowFunctionTests(TestCase):
|
|
|
|
@classmethod
|
|
|
|
def setUpTestData(cls):
|
2022-08-10 12:22:01 +00:00
|
|
|
classification = Classification.objects.create()
|
2017-09-18 13:42:29 +00:00
|
|
|
Employee.objects.bulk_create(
|
|
|
|
[
|
2020-09-22 13:01:52 +00:00
|
|
|
Employee(
|
|
|
|
name=e[0],
|
|
|
|
salary=e[1],
|
|
|
|
department=e[2],
|
|
|
|
hire_date=e[3],
|
|
|
|
age=e[4],
|
|
|
|
bonus=Decimal(e[1]) / 400,
|
2022-08-10 12:22:01 +00:00
|
|
|
classification=classification,
|
2020-09-22 13:01:52 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
for e in [
|
2018-07-25 23:45:32 +00:00
|
|
|
("Jones", 45000, "Accounting", datetime.datetime(2005, 11, 1), 20),
|
|
|
|
(
|
|
|
|
"Williams",
|
|
|
|
37000,
|
|
|
|
"Accounting",
|
|
|
|
datetime.datetime(2009, 6, 1),
|
|
|
|
20,
|
|
|
|
),
|
|
|
|
("Jenson", 45000, "Accounting", datetime.datetime(2008, 4, 1), 20),
|
|
|
|
("Adams", 50000, "Accounting", datetime.datetime(2013, 7, 1), 50),
|
|
|
|
("Smith", 55000, "Sales", datetime.datetime(2007, 6, 1), 30),
|
|
|
|
("Brown", 53000, "Sales", datetime.datetime(2009, 9, 1), 30),
|
|
|
|
("Johnson", 40000, "Marketing", datetime.datetime(2012, 3, 1), 30),
|
|
|
|
("Smith", 38000, "Marketing", datetime.datetime(2009, 10, 1), 20),
|
|
|
|
("Wilkinson", 60000, "IT", datetime.datetime(2011, 3, 1), 40),
|
|
|
|
("Moore", 34000, "IT", datetime.datetime(2013, 8, 1), 40),
|
|
|
|
("Miller", 100000, "Management", datetime.datetime(2005, 6, 1), 40),
|
|
|
|
("Johnson", 80000, "Management", datetime.datetime(2005, 7, 1), 50),
|
2022-02-03 19:24:19 +00:00
|
|
|
]
|
2017-09-18 13:42:29 +00:00
|
|
|
]
|
|
|
|
)
|
2022-08-10 12:22:01 +00:00
|
|
|
employees = list(Employee.objects.order_by("pk"))
|
|
|
|
PastEmployeeDepartment.objects.bulk_create(
|
|
|
|
[
|
|
|
|
PastEmployeeDepartment(employee=employees[6], department="Sales"),
|
|
|
|
PastEmployeeDepartment(employee=employees[10], department="IT"),
|
|
|
|
]
|
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
|
|
|
|
def test_dense_rank(self):
|
2020-11-15 22:43:47 +00:00
|
|
|
tests = [
|
|
|
|
ExtractYear(F("hire_date")).asc(),
|
|
|
|
F("hire_date__year").asc(),
|
2021-11-23 05:39:04 +00:00
|
|
|
"hire_date__year",
|
2020-11-15 22:43:47 +00:00
|
|
|
]
|
|
|
|
for order_by in tests:
|
|
|
|
with self.subTest(order_by=order_by):
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
rank=Window(expression=DenseRank(), order_by=order_by),
|
|
|
|
)
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2020-11-15 22:43:47 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Jones", 45000, "Accounting", datetime.date(2005, 11, 1), 1),
|
|
|
|
("Miller", 100000, "Management", datetime.date(2005, 6, 1), 1),
|
|
|
|
("Johnson", 80000, "Management", datetime.date(2005, 7, 1), 1),
|
|
|
|
("Smith", 55000, "Sales", datetime.date(2007, 6, 1), 2),
|
|
|
|
("Jenson", 45000, "Accounting", datetime.date(2008, 4, 1), 3),
|
|
|
|
("Smith", 38000, "Marketing", datetime.date(2009, 10, 1), 4),
|
|
|
|
("Brown", 53000, "Sales", datetime.date(2009, 9, 1), 4),
|
|
|
|
("Williams", 37000, "Accounting", datetime.date(2009, 6, 1), 4),
|
|
|
|
("Wilkinson", 60000, "IT", datetime.date(2011, 3, 1), 5),
|
|
|
|
("Johnson", 40000, "Marketing", datetime.date(2012, 3, 1), 6),
|
|
|
|
("Moore", 34000, "IT", datetime.date(2013, 8, 1), 7),
|
|
|
|
("Adams", 50000, "Accounting", datetime.date(2013, 7, 1), 7),
|
|
|
|
],
|
|
|
|
lambda entry: (
|
|
|
|
entry.name,
|
|
|
|
entry.salary,
|
|
|
|
entry.department,
|
|
|
|
entry.hire_date,
|
|
|
|
entry.rank,
|
|
|
|
),
|
|
|
|
ordered=False,
|
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
|
|
|
|
def test_department_salary(self):
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
department_sum=Window(
|
|
|
|
expression=Sum("salary"),
|
|
|
|
partition_by=F("department"),
|
|
|
|
order_by=[F("hire_date").asc()],
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
).order_by("department", "department_sum")
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Jones", "Accounting", 45000, 45000),
|
|
|
|
("Jenson", "Accounting", 45000, 90000),
|
|
|
|
("Williams", "Accounting", 37000, 127000),
|
|
|
|
("Adams", "Accounting", 50000, 177000),
|
|
|
|
("Wilkinson", "IT", 60000, 60000),
|
|
|
|
("Moore", "IT", 34000, 94000),
|
|
|
|
("Miller", "Management", 100000, 100000),
|
|
|
|
("Johnson", "Management", 80000, 180000),
|
|
|
|
("Smith", "Marketing", 38000, 38000),
|
|
|
|
("Johnson", "Marketing", 40000, 78000),
|
|
|
|
("Smith", "Sales", 55000, 55000),
|
|
|
|
("Brown", "Sales", 53000, 108000),
|
|
|
|
],
|
|
|
|
lambda entry: (
|
|
|
|
entry.name,
|
|
|
|
entry.department,
|
|
|
|
entry.salary,
|
|
|
|
entry.department_sum,
|
2022-02-03 19:24:19 +00:00
|
|
|
),
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def test_rank(self):
|
|
|
|
"""
|
|
|
|
Rank the employees based on the year they're were hired. Since there
|
|
|
|
are multiple employees hired in different years, this will contain
|
|
|
|
gaps.
|
|
|
|
"""
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
rank=Window(
|
|
|
|
expression=Rank(),
|
2020-11-15 22:43:47 +00:00
|
|
|
order_by=F("hire_date__year").asc(),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Jones", 45000, "Accounting", datetime.date(2005, 11, 1), 1),
|
|
|
|
("Miller", 100000, "Management", datetime.date(2005, 6, 1), 1),
|
|
|
|
("Johnson", 80000, "Management", datetime.date(2005, 7, 1), 1),
|
|
|
|
("Smith", 55000, "Sales", datetime.date(2007, 6, 1), 4),
|
|
|
|
("Jenson", 45000, "Accounting", datetime.date(2008, 4, 1), 5),
|
|
|
|
("Smith", 38000, "Marketing", datetime.date(2009, 10, 1), 6),
|
|
|
|
("Brown", 53000, "Sales", datetime.date(2009, 9, 1), 6),
|
|
|
|
("Williams", 37000, "Accounting", datetime.date(2009, 6, 1), 6),
|
|
|
|
("Wilkinson", 60000, "IT", datetime.date(2011, 3, 1), 9),
|
|
|
|
("Johnson", 40000, "Marketing", datetime.date(2012, 3, 1), 10),
|
|
|
|
("Moore", 34000, "IT", datetime.date(2013, 8, 1), 11),
|
|
|
|
("Adams", 50000, "Accounting", datetime.date(2013, 7, 1), 11),
|
|
|
|
],
|
|
|
|
lambda entry: (
|
|
|
|
entry.name,
|
|
|
|
entry.salary,
|
|
|
|
entry.department,
|
|
|
|
entry.hire_date,
|
|
|
|
entry.rank,
|
|
|
|
),
|
|
|
|
ordered=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_row_number(self):
|
|
|
|
"""
|
|
|
|
The row number window function computes the number based on the order
|
|
|
|
in which the tuples were inserted. Depending on the backend,
|
|
|
|
|
|
|
|
Oracle requires an ordering-clause in the Window expression.
|
|
|
|
"""
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
row_number=Window(
|
|
|
|
expression=RowNumber(),
|
|
|
|
order_by=F("pk").asc(),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
).order_by("pk")
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Jones", "Accounting", 1),
|
|
|
|
("Williams", "Accounting", 2),
|
|
|
|
("Jenson", "Accounting", 3),
|
|
|
|
("Adams", "Accounting", 4),
|
|
|
|
("Smith", "Sales", 5),
|
|
|
|
("Brown", "Sales", 6),
|
|
|
|
("Johnson", "Marketing", 7),
|
|
|
|
("Smith", "Marketing", 8),
|
|
|
|
("Wilkinson", "IT", 9),
|
|
|
|
("Moore", "IT", 10),
|
|
|
|
("Miller", "Management", 11),
|
|
|
|
("Johnson", "Management", 12),
|
|
|
|
],
|
|
|
|
lambda entry: (entry.name, entry.department, entry.row_number),
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_row_number_no_ordering(self):
|
|
|
|
"""
|
|
|
|
The row number window function computes the number based on the order
|
|
|
|
in which the tuples were inserted.
|
|
|
|
"""
|
|
|
|
# Add a default ordering for consistent results across databases.
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
row_number=Window(
|
|
|
|
expression=RowNumber(),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
).order_by("pk")
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Jones", "Accounting", 1),
|
|
|
|
("Williams", "Accounting", 2),
|
|
|
|
("Jenson", "Accounting", 3),
|
|
|
|
("Adams", "Accounting", 4),
|
|
|
|
("Smith", "Sales", 5),
|
|
|
|
("Brown", "Sales", 6),
|
|
|
|
("Johnson", "Marketing", 7),
|
|
|
|
("Smith", "Marketing", 8),
|
|
|
|
("Wilkinson", "IT", 9),
|
|
|
|
("Moore", "IT", 10),
|
|
|
|
("Miller", "Management", 11),
|
|
|
|
("Johnson", "Management", 12),
|
|
|
|
],
|
|
|
|
lambda entry: (entry.name, entry.department, entry.row_number),
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_avg_salary_department(self):
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
avg_salary=Window(
|
|
|
|
expression=Avg("salary"),
|
|
|
|
order_by=F("department").asc(),
|
|
|
|
partition_by="department",
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
).order_by("department", "-salary", "name")
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Adams", 50000, "Accounting", 44250.00),
|
|
|
|
("Jenson", 45000, "Accounting", 44250.00),
|
|
|
|
("Jones", 45000, "Accounting", 44250.00),
|
|
|
|
("Williams", 37000, "Accounting", 44250.00),
|
|
|
|
("Wilkinson", 60000, "IT", 47000.00),
|
|
|
|
("Moore", 34000, "IT", 47000.00),
|
|
|
|
("Miller", 100000, "Management", 90000.00),
|
|
|
|
("Johnson", 80000, "Management", 90000.00),
|
|
|
|
("Johnson", 40000, "Marketing", 39000.00),
|
|
|
|
("Smith", 38000, "Marketing", 39000.00),
|
|
|
|
("Smith", 55000, "Sales", 54000.00),
|
|
|
|
("Brown", 53000, "Sales", 54000.00),
|
|
|
|
],
|
|
|
|
transform=lambda row: (
|
|
|
|
row.name,
|
|
|
|
row.salary,
|
|
|
|
row.department,
|
|
|
|
row.avg_salary,
|
2022-02-03 19:24:19 +00:00
|
|
|
),
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def test_lag(self):
|
|
|
|
"""
|
|
|
|
Compute the difference between an employee's salary and the next
|
|
|
|
highest salary in the employee's department. Return None if the
|
|
|
|
employee has the lowest salary.
|
|
|
|
"""
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
lag=Window(
|
|
|
|
expression=Lag(expression="salary", offset=1),
|
|
|
|
partition_by=F("department"),
|
|
|
|
order_by=[F("salary").asc(), F("name").asc()],
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2018-10-21 18:42:34 +00:00
|
|
|
).order_by("department", F("salary").asc(), F("name").asc())
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Williams", 37000, "Accounting", None),
|
|
|
|
("Jenson", 45000, "Accounting", 37000),
|
|
|
|
("Jones", 45000, "Accounting", 45000),
|
|
|
|
("Adams", 50000, "Accounting", 45000),
|
|
|
|
("Moore", 34000, "IT", None),
|
|
|
|
("Wilkinson", 60000, "IT", 34000),
|
|
|
|
("Johnson", 80000, "Management", None),
|
|
|
|
("Miller", 100000, "Management", 80000),
|
|
|
|
("Smith", 38000, "Marketing", None),
|
|
|
|
("Johnson", 40000, "Marketing", 38000),
|
|
|
|
("Brown", 53000, "Sales", None),
|
|
|
|
("Smith", 55000, "Sales", 53000),
|
|
|
|
],
|
|
|
|
transform=lambda row: (row.name, row.salary, row.department, row.lag),
|
|
|
|
)
|
|
|
|
|
2020-09-22 13:01:52 +00:00
|
|
|
def test_lag_decimalfield(self):
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
lag=Window(
|
|
|
|
expression=Lag(expression="bonus", offset=1),
|
|
|
|
partition_by=F("department"),
|
|
|
|
order_by=[F("bonus").asc(), F("name").asc()],
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2020-09-22 13:01:52 +00:00
|
|
|
).order_by("department", F("bonus").asc(), F("name").asc())
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2020-09-22 13:01:52 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Williams", 92.5, "Accounting", None),
|
|
|
|
("Jenson", 112.5, "Accounting", 92.5),
|
|
|
|
("Jones", 112.5, "Accounting", 112.5),
|
|
|
|
("Adams", 125, "Accounting", 112.5),
|
|
|
|
("Moore", 85, "IT", None),
|
|
|
|
("Wilkinson", 150, "IT", 85),
|
|
|
|
("Johnson", 200, "Management", None),
|
|
|
|
("Miller", 250, "Management", 200),
|
|
|
|
("Smith", 95, "Marketing", None),
|
|
|
|
("Johnson", 100, "Marketing", 95),
|
|
|
|
("Brown", 132.5, "Sales", None),
|
|
|
|
("Smith", 137.5, "Sales", 132.5),
|
|
|
|
],
|
|
|
|
transform=lambda row: (row.name, row.bonus, row.department, row.lag),
|
|
|
|
)
|
|
|
|
|
2017-09-18 13:42:29 +00:00
|
|
|
def test_first_value(self):
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
first_value=Window(
|
|
|
|
expression=FirstValue("salary"),
|
|
|
|
partition_by=F("department"),
|
|
|
|
order_by=F("hire_date").asc(),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
).order_by("department", "hire_date")
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Jones", 45000, "Accounting", datetime.date(2005, 11, 1), 45000),
|
|
|
|
("Jenson", 45000, "Accounting", datetime.date(2008, 4, 1), 45000),
|
|
|
|
("Williams", 37000, "Accounting", datetime.date(2009, 6, 1), 45000),
|
|
|
|
("Adams", 50000, "Accounting", datetime.date(2013, 7, 1), 45000),
|
|
|
|
("Wilkinson", 60000, "IT", datetime.date(2011, 3, 1), 60000),
|
|
|
|
("Moore", 34000, "IT", datetime.date(2013, 8, 1), 60000),
|
|
|
|
("Miller", 100000, "Management", datetime.date(2005, 6, 1), 100000),
|
|
|
|
("Johnson", 80000, "Management", datetime.date(2005, 7, 1), 100000),
|
|
|
|
("Smith", 38000, "Marketing", datetime.date(2009, 10, 1), 38000),
|
|
|
|
("Johnson", 40000, "Marketing", datetime.date(2012, 3, 1), 38000),
|
|
|
|
("Smith", 55000, "Sales", datetime.date(2007, 6, 1), 55000),
|
|
|
|
("Brown", 53000, "Sales", datetime.date(2009, 9, 1), 55000),
|
|
|
|
],
|
|
|
|
lambda row: (
|
|
|
|
row.name,
|
|
|
|
row.salary,
|
|
|
|
row.department,
|
|
|
|
row.hire_date,
|
|
|
|
row.first_value,
|
2022-02-03 19:24:19 +00:00
|
|
|
),
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def test_last_value(self):
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
last_value=Window(
|
|
|
|
expression=LastValue("hire_date"),
|
|
|
|
partition_by=F("department"),
|
|
|
|
order_by=F("hire_date").asc(),
|
|
|
|
)
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
(
|
|
|
|
"Adams",
|
|
|
|
"Accounting",
|
|
|
|
datetime.date(2013, 7, 1),
|
|
|
|
50000,
|
|
|
|
datetime.date(2013, 7, 1),
|
|
|
|
),
|
|
|
|
(
|
|
|
|
"Jenson",
|
|
|
|
"Accounting",
|
|
|
|
datetime.date(2008, 4, 1),
|
|
|
|
45000,
|
|
|
|
datetime.date(2008, 4, 1),
|
|
|
|
),
|
|
|
|
(
|
|
|
|
"Jones",
|
|
|
|
"Accounting",
|
|
|
|
datetime.date(2005, 11, 1),
|
|
|
|
45000,
|
|
|
|
datetime.date(2005, 11, 1),
|
|
|
|
),
|
|
|
|
(
|
|
|
|
"Williams",
|
|
|
|
"Accounting",
|
|
|
|
datetime.date(2009, 6, 1),
|
|
|
|
37000,
|
|
|
|
datetime.date(2009, 6, 1),
|
|
|
|
),
|
|
|
|
(
|
|
|
|
"Moore",
|
|
|
|
"IT",
|
|
|
|
datetime.date(2013, 8, 1),
|
|
|
|
34000,
|
|
|
|
datetime.date(2013, 8, 1),
|
|
|
|
),
|
|
|
|
(
|
|
|
|
"Wilkinson",
|
|
|
|
"IT",
|
|
|
|
datetime.date(2011, 3, 1),
|
|
|
|
60000,
|
|
|
|
datetime.date(2011, 3, 1),
|
|
|
|
),
|
|
|
|
(
|
|
|
|
"Miller",
|
|
|
|
"Management",
|
|
|
|
datetime.date(2005, 6, 1),
|
|
|
|
100000,
|
|
|
|
datetime.date(2005, 6, 1),
|
|
|
|
),
|
|
|
|
(
|
|
|
|
"Johnson",
|
|
|
|
"Management",
|
|
|
|
datetime.date(2005, 7, 1),
|
|
|
|
80000,
|
|
|
|
datetime.date(2005, 7, 1),
|
|
|
|
),
|
|
|
|
(
|
|
|
|
"Johnson",
|
|
|
|
"Marketing",
|
|
|
|
datetime.date(2012, 3, 1),
|
|
|
|
40000,
|
|
|
|
datetime.date(2012, 3, 1),
|
|
|
|
),
|
|
|
|
(
|
|
|
|
"Smith",
|
|
|
|
"Marketing",
|
|
|
|
datetime.date(2009, 10, 1),
|
|
|
|
38000,
|
|
|
|
datetime.date(2009, 10, 1),
|
|
|
|
),
|
|
|
|
(
|
|
|
|
"Brown",
|
|
|
|
"Sales",
|
|
|
|
datetime.date(2009, 9, 1),
|
|
|
|
53000,
|
|
|
|
datetime.date(2009, 9, 1),
|
|
|
|
),
|
|
|
|
(
|
|
|
|
"Smith",
|
|
|
|
"Sales",
|
|
|
|
datetime.date(2007, 6, 1),
|
|
|
|
55000,
|
|
|
|
datetime.date(2007, 6, 1),
|
|
|
|
),
|
|
|
|
],
|
|
|
|
transform=lambda row: (
|
|
|
|
row.name,
|
|
|
|
row.department,
|
|
|
|
row.hire_date,
|
|
|
|
row.salary,
|
|
|
|
row.last_value,
|
2022-02-03 19:24:19 +00:00
|
|
|
),
|
2017-09-18 13:42:29 +00:00
|
|
|
ordered=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_function_list_of_values(self):
|
|
|
|
qs = (
|
|
|
|
Employee.objects.annotate(
|
|
|
|
lead=Window(
|
|
|
|
expression=Lead(expression="salary"),
|
|
|
|
order_by=[F("hire_date").asc(), F("name").desc()],
|
|
|
|
partition_by="department",
|
2018-10-21 18:42:34 +00:00
|
|
|
)
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2018-10-21 18:42:34 +00:00
|
|
|
.values_list("name", "salary", "department", "hire_date", "lead")
|
|
|
|
.order_by("department", F("hire_date").asc(), F("name").desc())
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
self.assertNotIn("GROUP BY", str(qs.query))
|
|
|
|
self.assertSequenceEqual(
|
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Jones", 45000, "Accounting", datetime.date(2005, 11, 1), 45000),
|
|
|
|
("Jenson", 45000, "Accounting", datetime.date(2008, 4, 1), 37000),
|
|
|
|
("Williams", 37000, "Accounting", datetime.date(2009, 6, 1), 50000),
|
|
|
|
("Adams", 50000, "Accounting", datetime.date(2013, 7, 1), None),
|
|
|
|
("Wilkinson", 60000, "IT", datetime.date(2011, 3, 1), 34000),
|
|
|
|
("Moore", 34000, "IT", datetime.date(2013, 8, 1), None),
|
|
|
|
("Miller", 100000, "Management", datetime.date(2005, 6, 1), 80000),
|
|
|
|
("Johnson", 80000, "Management", datetime.date(2005, 7, 1), None),
|
|
|
|
("Smith", 38000, "Marketing", datetime.date(2009, 10, 1), 40000),
|
|
|
|
("Johnson", 40000, "Marketing", datetime.date(2012, 3, 1), None),
|
|
|
|
("Smith", 55000, "Sales", datetime.date(2007, 6, 1), 53000),
|
|
|
|
("Brown", 53000, "Sales", datetime.date(2009, 9, 1), None),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_min_department(self):
|
|
|
|
"""An alternative way to specify a query for FirstValue."""
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
min_salary=Window(
|
|
|
|
expression=Min("salary"),
|
|
|
|
partition_by=F("department"),
|
|
|
|
order_by=[F("salary").asc(), F("name").asc()],
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
).order_by("department", "salary", "name")
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Williams", "Accounting", 37000, 37000),
|
|
|
|
("Jenson", "Accounting", 45000, 37000),
|
|
|
|
("Jones", "Accounting", 45000, 37000),
|
|
|
|
("Adams", "Accounting", 50000, 37000),
|
|
|
|
("Moore", "IT", 34000, 34000),
|
|
|
|
("Wilkinson", "IT", 60000, 34000),
|
|
|
|
("Johnson", "Management", 80000, 80000),
|
|
|
|
("Miller", "Management", 100000, 80000),
|
|
|
|
("Smith", "Marketing", 38000, 38000),
|
|
|
|
("Johnson", "Marketing", 40000, 38000),
|
|
|
|
("Brown", "Sales", 53000, 53000),
|
|
|
|
("Smith", "Sales", 55000, 53000),
|
|
|
|
],
|
|
|
|
lambda row: (row.name, row.department, row.salary, row.min_salary),
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_max_per_year(self):
|
|
|
|
"""
|
|
|
|
Find the maximum salary awarded in the same year as the
|
|
|
|
employee was hired, regardless of the department.
|
|
|
|
"""
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
max_salary_year=Window(
|
|
|
|
expression=Max("salary"),
|
|
|
|
order_by=ExtractYear("hire_date").asc(),
|
|
|
|
partition_by=ExtractYear("hire_date"),
|
|
|
|
)
|
|
|
|
).order_by(ExtractYear("hire_date"), "salary")
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Jones", "Accounting", 45000, 2005, 100000),
|
|
|
|
("Johnson", "Management", 80000, 2005, 100000),
|
|
|
|
("Miller", "Management", 100000, 2005, 100000),
|
|
|
|
("Smith", "Sales", 55000, 2007, 55000),
|
|
|
|
("Jenson", "Accounting", 45000, 2008, 45000),
|
|
|
|
("Williams", "Accounting", 37000, 2009, 53000),
|
|
|
|
("Smith", "Marketing", 38000, 2009, 53000),
|
|
|
|
("Brown", "Sales", 53000, 2009, 53000),
|
|
|
|
("Wilkinson", "IT", 60000, 2011, 60000),
|
|
|
|
("Johnson", "Marketing", 40000, 2012, 40000),
|
|
|
|
("Moore", "IT", 34000, 2013, 50000),
|
|
|
|
("Adams", "Accounting", 50000, 2013, 50000),
|
|
|
|
],
|
|
|
|
lambda row: (
|
|
|
|
row.name,
|
|
|
|
row.department,
|
|
|
|
row.salary,
|
|
|
|
row.hire_date.year,
|
|
|
|
row.max_salary_year,
|
2022-02-03 19:24:19 +00:00
|
|
|
),
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def test_cume_dist(self):
|
|
|
|
"""
|
|
|
|
Compute the cumulative distribution for the employees based on the
|
|
|
|
salary in increasing order. Equal to rank/total number of rows (12).
|
|
|
|
"""
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
cume_dist=Window(
|
|
|
|
expression=CumeDist(),
|
|
|
|
order_by=F("salary").asc(),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
).order_by("salary", "name")
|
|
|
|
# Round result of cume_dist because Oracle uses greater precision.
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Moore", "IT", 34000, 0.0833333333),
|
|
|
|
("Williams", "Accounting", 37000, 0.1666666667),
|
|
|
|
("Smith", "Marketing", 38000, 0.25),
|
|
|
|
("Johnson", "Marketing", 40000, 0.3333333333),
|
|
|
|
("Jenson", "Accounting", 45000, 0.5),
|
|
|
|
("Jones", "Accounting", 45000, 0.5),
|
|
|
|
("Adams", "Accounting", 50000, 0.5833333333),
|
|
|
|
("Brown", "Sales", 53000, 0.6666666667),
|
|
|
|
("Smith", "Sales", 55000, 0.75),
|
|
|
|
("Wilkinson", "IT", 60000, 0.8333333333),
|
|
|
|
("Johnson", "Management", 80000, 0.9166666667),
|
|
|
|
("Miller", "Management", 100000, 1),
|
|
|
|
],
|
|
|
|
lambda row: (
|
|
|
|
row.name,
|
|
|
|
row.department,
|
|
|
|
row.salary,
|
|
|
|
round(row.cume_dist, 10),
|
2022-02-03 19:24:19 +00:00
|
|
|
),
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def test_nthvalue(self):
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
nth_value=Window(
|
|
|
|
expression=NthValue(expression="salary", nth=2),
|
|
|
|
order_by=[F("hire_date").asc(), F("name").desc()],
|
|
|
|
partition_by=F("department"),
|
|
|
|
)
|
|
|
|
).order_by("department", "hire_date", "name")
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Jones", "Accounting", datetime.date(2005, 11, 1), 45000, None),
|
|
|
|
("Jenson", "Accounting", datetime.date(2008, 4, 1), 45000, 45000),
|
|
|
|
("Williams", "Accounting", datetime.date(2009, 6, 1), 37000, 45000),
|
|
|
|
("Adams", "Accounting", datetime.date(2013, 7, 1), 50000, 45000),
|
|
|
|
("Wilkinson", "IT", datetime.date(2011, 3, 1), 60000, None),
|
|
|
|
("Moore", "IT", datetime.date(2013, 8, 1), 34000, 34000),
|
|
|
|
("Miller", "Management", datetime.date(2005, 6, 1), 100000, None),
|
|
|
|
("Johnson", "Management", datetime.date(2005, 7, 1), 80000, 80000),
|
|
|
|
("Smith", "Marketing", datetime.date(2009, 10, 1), 38000, None),
|
|
|
|
("Johnson", "Marketing", datetime.date(2012, 3, 1), 40000, 40000),
|
|
|
|
("Smith", "Sales", datetime.date(2007, 6, 1), 55000, None),
|
|
|
|
("Brown", "Sales", datetime.date(2009, 9, 1), 53000, 53000),
|
|
|
|
],
|
|
|
|
lambda row: (
|
|
|
|
row.name,
|
|
|
|
row.department,
|
|
|
|
row.hire_date,
|
|
|
|
row.salary,
|
|
|
|
row.nth_value,
|
2022-02-03 19:24:19 +00:00
|
|
|
),
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def test_lead(self):
|
|
|
|
"""
|
|
|
|
Determine what the next person hired in the same department makes.
|
|
|
|
Because the dataset is ambiguous, the name is also part of the
|
|
|
|
ordering clause. No default is provided, so None/NULL should be
|
|
|
|
returned.
|
|
|
|
"""
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
lead=Window(
|
|
|
|
expression=Lead(expression="salary"),
|
|
|
|
order_by=[F("hire_date").asc(), F("name").desc()],
|
|
|
|
partition_by="department",
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2018-10-21 18:42:34 +00:00
|
|
|
).order_by("department", F("hire_date").asc(), F("name").desc())
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Jones", 45000, "Accounting", datetime.date(2005, 11, 1), 45000),
|
|
|
|
("Jenson", 45000, "Accounting", datetime.date(2008, 4, 1), 37000),
|
|
|
|
("Williams", 37000, "Accounting", datetime.date(2009, 6, 1), 50000),
|
|
|
|
("Adams", 50000, "Accounting", datetime.date(2013, 7, 1), None),
|
|
|
|
("Wilkinson", 60000, "IT", datetime.date(2011, 3, 1), 34000),
|
|
|
|
("Moore", 34000, "IT", datetime.date(2013, 8, 1), None),
|
|
|
|
("Miller", 100000, "Management", datetime.date(2005, 6, 1), 80000),
|
|
|
|
("Johnson", 80000, "Management", datetime.date(2005, 7, 1), None),
|
|
|
|
("Smith", 38000, "Marketing", datetime.date(2009, 10, 1), 40000),
|
|
|
|
("Johnson", 40000, "Marketing", datetime.date(2012, 3, 1), None),
|
|
|
|
("Smith", 55000, "Sales", datetime.date(2007, 6, 1), 53000),
|
|
|
|
("Brown", 53000, "Sales", datetime.date(2009, 9, 1), None),
|
|
|
|
],
|
|
|
|
transform=lambda row: (
|
|
|
|
row.name,
|
|
|
|
row.salary,
|
|
|
|
row.department,
|
|
|
|
row.hire_date,
|
|
|
|
row.lead,
|
2022-02-03 19:24:19 +00:00
|
|
|
),
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def test_lead_offset(self):
|
|
|
|
"""
|
|
|
|
Determine what the person hired after someone makes. Due to
|
|
|
|
ambiguity, the name is also included in the ordering.
|
|
|
|
"""
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
lead=Window(
|
|
|
|
expression=Lead("salary", offset=2),
|
|
|
|
partition_by="department",
|
|
|
|
order_by=F("hire_date").asc(),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Jones", 45000, "Accounting", datetime.date(2005, 11, 1), 37000),
|
|
|
|
("Jenson", 45000, "Accounting", datetime.date(2008, 4, 1), 50000),
|
|
|
|
("Williams", 37000, "Accounting", datetime.date(2009, 6, 1), None),
|
|
|
|
("Adams", 50000, "Accounting", datetime.date(2013, 7, 1), None),
|
|
|
|
("Wilkinson", 60000, "IT", datetime.date(2011, 3, 1), None),
|
|
|
|
("Moore", 34000, "IT", datetime.date(2013, 8, 1), None),
|
|
|
|
("Johnson", 80000, "Management", datetime.date(2005, 7, 1), None),
|
|
|
|
("Miller", 100000, "Management", datetime.date(2005, 6, 1), None),
|
|
|
|
("Smith", 38000, "Marketing", datetime.date(2009, 10, 1), None),
|
|
|
|
("Johnson", 40000, "Marketing", datetime.date(2012, 3, 1), None),
|
|
|
|
("Smith", 55000, "Sales", datetime.date(2007, 6, 1), None),
|
|
|
|
("Brown", 53000, "Sales", datetime.date(2009, 9, 1), None),
|
|
|
|
],
|
|
|
|
transform=lambda row: (
|
|
|
|
row.name,
|
|
|
|
row.salary,
|
|
|
|
row.department,
|
|
|
|
row.hire_date,
|
|
|
|
row.lead,
|
|
|
|
),
|
|
|
|
ordered=False,
|
|
|
|
)
|
2022-02-03 19:24:19 +00:00
|
|
|
|
2018-07-25 23:45:32 +00:00
|
|
|
@skipUnlessDBFeature("supports_default_in_lead_lag")
|
2017-09-18 13:42:29 +00:00
|
|
|
def test_lead_default(self):
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
lead_default=Window(
|
|
|
|
expression=Lead(expression="salary", offset=5, default=60000),
|
|
|
|
partition_by=F("department"),
|
|
|
|
order_by=F("department").asc(),
|
|
|
|
)
|
|
|
|
)
|
|
|
|
self.assertEqual(
|
|
|
|
list(qs.values_list("lead_default", flat=True).distinct()), [60000]
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
|
|
|
|
def test_ntile(self):
|
|
|
|
"""
|
|
|
|
Compute the group for each of the employees across the entire company,
|
|
|
|
based on how high the salary is for them. There are twelve employees
|
|
|
|
so it divides evenly into four groups.
|
|
|
|
"""
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
ntile=Window(
|
|
|
|
expression=Ntile(num_buckets=4),
|
2021-11-23 05:39:04 +00:00
|
|
|
order_by="-salary",
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
).order_by("ntile", "-salary", "name")
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Miller", "Management", 100000, 1),
|
|
|
|
("Johnson", "Management", 80000, 1),
|
|
|
|
("Wilkinson", "IT", 60000, 1),
|
|
|
|
("Smith", "Sales", 55000, 2),
|
|
|
|
("Brown", "Sales", 53000, 2),
|
|
|
|
("Adams", "Accounting", 50000, 2),
|
|
|
|
("Jenson", "Accounting", 45000, 3),
|
|
|
|
("Jones", "Accounting", 45000, 3),
|
|
|
|
("Johnson", "Marketing", 40000, 3),
|
|
|
|
("Smith", "Marketing", 38000, 4),
|
|
|
|
("Williams", "Accounting", 37000, 4),
|
|
|
|
("Moore", "IT", 34000, 4),
|
|
|
|
],
|
|
|
|
lambda x: (x.name, x.department, x.salary, x.ntile),
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_percent_rank(self):
|
|
|
|
"""
|
|
|
|
Calculate the percentage rank of the employees across the entire
|
|
|
|
company based on salary and name (in case of ambiguity).
|
|
|
|
"""
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
percent_rank=Window(
|
|
|
|
expression=PercentRank(),
|
|
|
|
order_by=[F("salary").asc(), F("name").asc()],
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
).order_by("percent_rank")
|
|
|
|
# Round to account for precision differences among databases.
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Moore", "IT", 34000, 0.0),
|
|
|
|
("Williams", "Accounting", 37000, 0.0909090909),
|
|
|
|
("Smith", "Marketing", 38000, 0.1818181818),
|
|
|
|
("Johnson", "Marketing", 40000, 0.2727272727),
|
|
|
|
("Jenson", "Accounting", 45000, 0.3636363636),
|
|
|
|
("Jones", "Accounting", 45000, 0.4545454545),
|
|
|
|
("Adams", "Accounting", 50000, 0.5454545455),
|
|
|
|
("Brown", "Sales", 53000, 0.6363636364),
|
|
|
|
("Smith", "Sales", 55000, 0.7272727273),
|
|
|
|
("Wilkinson", "IT", 60000, 0.8181818182),
|
|
|
|
("Johnson", "Management", 80000, 0.9090909091),
|
|
|
|
("Miller", "Management", 100000, 1.0),
|
|
|
|
],
|
|
|
|
transform=lambda row: (
|
|
|
|
row.name,
|
|
|
|
row.department,
|
|
|
|
row.salary,
|
|
|
|
round(row.percent_rank, 10),
|
2022-02-03 19:24:19 +00:00
|
|
|
),
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def test_nth_returns_null(self):
|
|
|
|
"""
|
|
|
|
Find the nth row of the data set. None is returned since there are
|
|
|
|
fewer than 20 rows in the test data.
|
|
|
|
"""
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
nth_value=Window(
|
|
|
|
expression=NthValue("salary", nth=20), order_by=F("salary").asc()
|
|
|
|
)
|
|
|
|
)
|
|
|
|
self.assertEqual(
|
|
|
|
list(qs.values_list("nth_value", flat=True).distinct()), [None]
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
|
|
|
|
def test_multiple_partitioning(self):
|
|
|
|
"""
|
|
|
|
Find the maximum salary for each department for people hired in the
|
|
|
|
same year.
|
|
|
|
"""
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
max=Window(
|
|
|
|
expression=Max("salary"),
|
2020-11-15 22:43:47 +00:00
|
|
|
partition_by=[F("department"), F("hire_date__year")],
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
).order_by("department", "hire_date", "name")
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Jones", 45000, "Accounting", datetime.date(2005, 11, 1), 45000),
|
|
|
|
("Jenson", 45000, "Accounting", datetime.date(2008, 4, 1), 45000),
|
|
|
|
("Williams", 37000, "Accounting", datetime.date(2009, 6, 1), 37000),
|
|
|
|
("Adams", 50000, "Accounting", datetime.date(2013, 7, 1), 50000),
|
|
|
|
("Wilkinson", 60000, "IT", datetime.date(2011, 3, 1), 60000),
|
|
|
|
("Moore", 34000, "IT", datetime.date(2013, 8, 1), 34000),
|
|
|
|
("Miller", 100000, "Management", datetime.date(2005, 6, 1), 100000),
|
|
|
|
("Johnson", 80000, "Management", datetime.date(2005, 7, 1), 100000),
|
|
|
|
("Smith", 38000, "Marketing", datetime.date(2009, 10, 1), 38000),
|
|
|
|
("Johnson", 40000, "Marketing", datetime.date(2012, 3, 1), 40000),
|
|
|
|
("Smith", 55000, "Sales", datetime.date(2007, 6, 1), 55000),
|
|
|
|
("Brown", 53000, "Sales", datetime.date(2009, 9, 1), 53000),
|
|
|
|
],
|
|
|
|
transform=lambda row: (
|
|
|
|
row.name,
|
|
|
|
row.salary,
|
|
|
|
row.department,
|
|
|
|
row.hire_date,
|
|
|
|
row.max,
|
2022-02-03 19:24:19 +00:00
|
|
|
),
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def test_multiple_ordering(self):
|
|
|
|
"""
|
|
|
|
Accumulate the salaries over the departments based on hire_date.
|
|
|
|
If two people were hired on the same date in the same department, the
|
|
|
|
ordering clause will render a different result for those people.
|
|
|
|
"""
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
sum=Window(
|
|
|
|
expression=Sum("salary"),
|
|
|
|
partition_by="department",
|
|
|
|
order_by=[F("hire_date").asc(), F("name").asc()],
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
).order_by("department", "sum")
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Jones", 45000, "Accounting", datetime.date(2005, 11, 1), 45000),
|
|
|
|
("Jenson", 45000, "Accounting", datetime.date(2008, 4, 1), 90000),
|
|
|
|
("Williams", 37000, "Accounting", datetime.date(2009, 6, 1), 127000),
|
|
|
|
("Adams", 50000, "Accounting", datetime.date(2013, 7, 1), 177000),
|
|
|
|
("Wilkinson", 60000, "IT", datetime.date(2011, 3, 1), 60000),
|
|
|
|
("Moore", 34000, "IT", datetime.date(2013, 8, 1), 94000),
|
|
|
|
("Miller", 100000, "Management", datetime.date(2005, 6, 1), 100000),
|
|
|
|
("Johnson", 80000, "Management", datetime.date(2005, 7, 1), 180000),
|
|
|
|
("Smith", 38000, "Marketing", datetime.date(2009, 10, 1), 38000),
|
|
|
|
("Johnson", 40000, "Marketing", datetime.date(2012, 3, 1), 78000),
|
|
|
|
("Smith", 55000, "Sales", datetime.date(2007, 6, 1), 55000),
|
|
|
|
("Brown", 53000, "Sales", datetime.date(2009, 9, 1), 108000),
|
|
|
|
],
|
|
|
|
transform=lambda row: (
|
|
|
|
row.name,
|
|
|
|
row.salary,
|
|
|
|
row.department,
|
|
|
|
row.hire_date,
|
|
|
|
row.sum,
|
2022-02-03 19:24:19 +00:00
|
|
|
),
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
|
|
|
|
2020-01-21 09:29:54 +00:00
|
|
|
def test_related_ordering_with_count(self):
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
department_sum=Window(
|
|
|
|
expression=Sum("salary"),
|
|
|
|
partition_by=F("department"),
|
|
|
|
order_by=["classification__code"],
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2020-01-21 09:29:54 +00:00
|
|
|
)
|
|
|
|
self.assertEqual(qs.count(), 12)
|
|
|
|
|
2022-08-10 12:22:01 +00:00
|
|
|
def test_filter(self):
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
department_salary_rank=Window(
|
|
|
|
Rank(), partition_by="department", order_by="-salary"
|
|
|
|
),
|
|
|
|
department_avg_age_diff=(
|
|
|
|
Window(Avg("age"), partition_by="department") - F("age")
|
|
|
|
),
|
|
|
|
).order_by("department", "name")
|
|
|
|
# Direct window reference.
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2022-08-10 12:22:01 +00:00
|
|
|
qs.filter(department_salary_rank=1),
|
|
|
|
["Adams", "Wilkinson", "Miller", "Johnson", "Smith"],
|
|
|
|
lambda employee: employee.name,
|
|
|
|
)
|
|
|
|
# Through a combined expression containing a window.
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2022-08-10 12:22:01 +00:00
|
|
|
qs.filter(department_avg_age_diff__gt=0),
|
|
|
|
["Jenson", "Jones", "Williams", "Miller", "Smith"],
|
|
|
|
lambda employee: employee.name,
|
|
|
|
)
|
|
|
|
# Intersection of multiple windows.
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2022-08-10 12:22:01 +00:00
|
|
|
qs.filter(department_salary_rank=1, department_avg_age_diff__gt=0),
|
|
|
|
["Miller"],
|
|
|
|
lambda employee: employee.name,
|
|
|
|
)
|
|
|
|
# Union of multiple windows.
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2022-08-10 12:22:01 +00:00
|
|
|
qs.filter(Q(department_salary_rank=1) | Q(department_avg_age_diff__gt=0)),
|
|
|
|
[
|
|
|
|
"Adams",
|
|
|
|
"Jenson",
|
|
|
|
"Jones",
|
|
|
|
"Williams",
|
|
|
|
"Wilkinson",
|
|
|
|
"Miller",
|
|
|
|
"Johnson",
|
|
|
|
"Smith",
|
|
|
|
"Smith",
|
|
|
|
],
|
|
|
|
lambda employee: employee.name,
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_filter_conditional_annotation(self):
|
|
|
|
qs = (
|
|
|
|
Employee.objects.annotate(
|
|
|
|
rank=Window(Rank(), partition_by="department", order_by="-salary"),
|
|
|
|
case_first_rank=Case(
|
|
|
|
When(rank=1, then=True),
|
|
|
|
default=False,
|
|
|
|
),
|
|
|
|
q_first_rank=Q(rank=1),
|
|
|
|
)
|
|
|
|
.order_by("name")
|
|
|
|
.values_list("name", flat=True)
|
|
|
|
)
|
|
|
|
for annotation in ["case_first_rank", "q_first_rank"]:
|
|
|
|
with self.subTest(annotation=annotation):
|
|
|
|
self.assertSequenceEqual(
|
|
|
|
qs.filter(**{annotation: True}),
|
|
|
|
["Adams", "Johnson", "Miller", "Smith", "Wilkinson"],
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_filter_conditional_expression(self):
|
|
|
|
qs = (
|
|
|
|
Employee.objects.filter(
|
|
|
|
Exact(Window(Rank(), partition_by="department", order_by="-salary"), 1)
|
|
|
|
)
|
|
|
|
.order_by("name")
|
|
|
|
.values_list("name", flat=True)
|
|
|
|
)
|
|
|
|
self.assertSequenceEqual(
|
|
|
|
qs, ["Adams", "Johnson", "Miller", "Smith", "Wilkinson"]
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_filter_column_ref_rhs(self):
|
|
|
|
qs = (
|
|
|
|
Employee.objects.annotate(
|
|
|
|
max_dept_salary=Window(Max("salary"), partition_by="department")
|
|
|
|
)
|
|
|
|
.filter(max_dept_salary=F("salary"))
|
|
|
|
.order_by("name")
|
|
|
|
.values_list("name", flat=True)
|
|
|
|
)
|
|
|
|
self.assertSequenceEqual(
|
|
|
|
qs, ["Adams", "Johnson", "Miller", "Smith", "Wilkinson"]
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_filter_values(self):
|
|
|
|
qs = (
|
|
|
|
Employee.objects.annotate(
|
|
|
|
department_salary_rank=Window(
|
|
|
|
Rank(), partition_by="department", order_by="-salary"
|
|
|
|
),
|
|
|
|
)
|
|
|
|
.order_by("department", "name")
|
|
|
|
.values_list(Upper("name"), flat=True)
|
|
|
|
)
|
|
|
|
self.assertSequenceEqual(
|
|
|
|
qs.filter(department_salary_rank=1),
|
|
|
|
["ADAMS", "WILKINSON", "MILLER", "JOHNSON", "SMITH"],
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_filter_alias(self):
|
|
|
|
qs = Employee.objects.alias(
|
|
|
|
department_avg_age_diff=(
|
|
|
|
Window(Avg("age"), partition_by="department") - F("age")
|
|
|
|
),
|
|
|
|
).order_by("department", "name")
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2022-08-10 12:22:01 +00:00
|
|
|
qs.filter(department_avg_age_diff__gt=0),
|
|
|
|
["Jenson", "Jones", "Williams", "Miller", "Smith"],
|
|
|
|
lambda employee: employee.name,
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_filter_select_related(self):
|
|
|
|
qs = (
|
|
|
|
Employee.objects.alias(
|
|
|
|
department_avg_age_diff=(
|
|
|
|
Window(Avg("age"), partition_by="department") - F("age")
|
|
|
|
),
|
|
|
|
)
|
|
|
|
.select_related("classification")
|
|
|
|
.filter(department_avg_age_diff__gt=0)
|
|
|
|
.order_by("department", "name")
|
|
|
|
)
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2022-08-10 12:22:01 +00:00
|
|
|
qs,
|
|
|
|
["Jenson", "Jones", "Williams", "Miller", "Smith"],
|
|
|
|
lambda employee: employee.name,
|
|
|
|
)
|
|
|
|
with self.assertNumQueries(0):
|
|
|
|
qs[0].classification
|
|
|
|
|
|
|
|
def test_exclude(self):
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
department_salary_rank=Window(
|
|
|
|
Rank(), partition_by="department", order_by="-salary"
|
|
|
|
),
|
|
|
|
department_avg_age_diff=(
|
|
|
|
Window(Avg("age"), partition_by="department") - F("age")
|
|
|
|
),
|
|
|
|
).order_by("department", "name")
|
|
|
|
# Direct window reference.
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2022-08-10 12:22:01 +00:00
|
|
|
qs.exclude(department_salary_rank__gt=1),
|
|
|
|
["Adams", "Wilkinson", "Miller", "Johnson", "Smith"],
|
|
|
|
lambda employee: employee.name,
|
|
|
|
)
|
|
|
|
# Through a combined expression containing a window.
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2022-08-10 12:22:01 +00:00
|
|
|
qs.exclude(department_avg_age_diff__lte=0),
|
|
|
|
["Jenson", "Jones", "Williams", "Miller", "Smith"],
|
|
|
|
lambda employee: employee.name,
|
|
|
|
)
|
|
|
|
# Union of multiple windows.
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2022-08-10 12:22:01 +00:00
|
|
|
qs.exclude(
|
|
|
|
Q(department_salary_rank__gt=1) | Q(department_avg_age_diff__lte=0)
|
|
|
|
),
|
|
|
|
["Miller"],
|
|
|
|
lambda employee: employee.name,
|
|
|
|
)
|
|
|
|
# Intersection of multiple windows.
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2022-08-10 12:22:01 +00:00
|
|
|
qs.exclude(department_salary_rank__gt=1, department_avg_age_diff__lte=0),
|
|
|
|
[
|
|
|
|
"Adams",
|
|
|
|
"Jenson",
|
|
|
|
"Jones",
|
|
|
|
"Williams",
|
|
|
|
"Wilkinson",
|
|
|
|
"Miller",
|
|
|
|
"Johnson",
|
|
|
|
"Smith",
|
|
|
|
"Smith",
|
|
|
|
],
|
|
|
|
lambda employee: employee.name,
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_heterogeneous_filter(self):
|
|
|
|
qs = (
|
|
|
|
Employee.objects.annotate(
|
|
|
|
department_salary_rank=Window(
|
|
|
|
Rank(), partition_by="department", order_by="-salary"
|
|
|
|
),
|
|
|
|
)
|
|
|
|
.order_by("name")
|
|
|
|
.values_list("name", flat=True)
|
|
|
|
)
|
|
|
|
# Heterogeneous filter between window function and aggregates pushes
|
|
|
|
# the WHERE clause to the QUALIFY outer query.
|
|
|
|
self.assertSequenceEqual(
|
|
|
|
qs.filter(
|
|
|
|
department_salary_rank=1, department__in=["Accounting", "Management"]
|
|
|
|
),
|
|
|
|
["Adams", "Miller"],
|
|
|
|
)
|
|
|
|
self.assertSequenceEqual(
|
|
|
|
qs.filter(
|
|
|
|
Q(department_salary_rank=1)
|
|
|
|
| Q(department__in=["Accounting", "Management"])
|
|
|
|
),
|
|
|
|
[
|
|
|
|
"Adams",
|
|
|
|
"Jenson",
|
|
|
|
"Johnson",
|
|
|
|
"Johnson",
|
|
|
|
"Jones",
|
|
|
|
"Miller",
|
|
|
|
"Smith",
|
|
|
|
"Wilkinson",
|
|
|
|
"Williams",
|
|
|
|
],
|
|
|
|
)
|
|
|
|
# Heterogeneous filter between window function and aggregates pushes
|
|
|
|
# the HAVING clause to the QUALIFY outer query.
|
|
|
|
qs = qs.annotate(past_department_count=Count("past_departments"))
|
|
|
|
self.assertSequenceEqual(
|
|
|
|
qs.filter(department_salary_rank=1, past_department_count__gte=1),
|
|
|
|
["Johnson", "Miller"],
|
|
|
|
)
|
|
|
|
self.assertSequenceEqual(
|
|
|
|
qs.filter(Q(department_salary_rank=1) | Q(past_department_count__gte=1)),
|
|
|
|
["Adams", "Johnson", "Miller", "Smith", "Wilkinson"],
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_limited_filter(self):
|
|
|
|
"""
|
|
|
|
A query filtering against a window function have its limit applied
|
|
|
|
after window filtering takes place.
|
|
|
|
"""
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2022-08-10 12:22:01 +00:00
|
|
|
Employee.objects.annotate(
|
|
|
|
department_salary_rank=Window(
|
|
|
|
Rank(), partition_by="department", order_by="-salary"
|
|
|
|
)
|
|
|
|
)
|
|
|
|
.filter(department_salary_rank=1)
|
|
|
|
.order_by("department")[0:3],
|
|
|
|
["Adams", "Wilkinson", "Miller"],
|
|
|
|
lambda employee: employee.name,
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_filter_count(self):
|
2022-11-10 02:55:47 +00:00
|
|
|
with CaptureQueriesContext(connection) as ctx:
|
|
|
|
self.assertEqual(
|
|
|
|
Employee.objects.annotate(
|
|
|
|
department_salary_rank=Window(
|
|
|
|
Rank(), partition_by="department", order_by="-salary"
|
|
|
|
)
|
2022-08-10 12:22:01 +00:00
|
|
|
)
|
2022-11-10 02:55:47 +00:00
|
|
|
.filter(department_salary_rank=1)
|
|
|
|
.count(),
|
|
|
|
5,
|
2022-08-10 12:22:01 +00:00
|
|
|
)
|
2022-11-10 02:55:47 +00:00
|
|
|
self.assertEqual(len(ctx.captured_queries), 1)
|
|
|
|
sql = ctx.captured_queries[0]["sql"].lower()
|
|
|
|
self.assertEqual(sql.count("select"), 3)
|
|
|
|
self.assertNotIn("group by", sql)
|
2022-08-10 12:22:01 +00:00
|
|
|
|
2019-01-16 04:23:50 +00:00
|
|
|
@skipUnlessDBFeature("supports_frame_range_fixed_distance")
|
2017-09-18 13:42:29 +00:00
|
|
|
def test_range_n_preceding_and_following(self):
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
sum=Window(
|
|
|
|
expression=Sum("salary"),
|
|
|
|
order_by=F("salary").asc(),
|
|
|
|
partition_by="department",
|
|
|
|
frame=ValueRange(start=-2, end=2),
|
|
|
|
)
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
self.assertIn("RANGE BETWEEN 2 PRECEDING AND 2 FOLLOWING", str(qs.query))
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Williams", 37000, "Accounting", datetime.date(2009, 6, 1), 37000),
|
|
|
|
("Jones", 45000, "Accounting", datetime.date(2005, 11, 1), 90000),
|
|
|
|
("Jenson", 45000, "Accounting", datetime.date(2008, 4, 1), 90000),
|
|
|
|
("Adams", 50000, "Accounting", datetime.date(2013, 7, 1), 50000),
|
|
|
|
("Brown", 53000, "Sales", datetime.date(2009, 9, 1), 53000),
|
|
|
|
("Smith", 55000, "Sales", datetime.date(2007, 6, 1), 55000),
|
|
|
|
("Johnson", 40000, "Marketing", datetime.date(2012, 3, 1), 40000),
|
|
|
|
("Smith", 38000, "Marketing", datetime.date(2009, 10, 1), 38000),
|
|
|
|
("Wilkinson", 60000, "IT", datetime.date(2011, 3, 1), 60000),
|
|
|
|
("Moore", 34000, "IT", datetime.date(2013, 8, 1), 34000),
|
|
|
|
("Miller", 100000, "Management", datetime.date(2005, 6, 1), 100000),
|
|
|
|
("Johnson", 80000, "Management", datetime.date(2005, 7, 1), 80000),
|
|
|
|
],
|
|
|
|
transform=lambda row: (
|
|
|
|
row.name,
|
|
|
|
row.salary,
|
|
|
|
row.department,
|
|
|
|
row.hire_date,
|
|
|
|
row.sum,
|
|
|
|
),
|
|
|
|
ordered=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_range_unbound(self):
|
|
|
|
"""A query with RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING."""
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
sum=Window(
|
|
|
|
expression=Sum("salary"),
|
2018-07-25 23:45:32 +00:00
|
|
|
partition_by="age",
|
|
|
|
order_by=[F("age").asc()],
|
2017-09-18 13:42:29 +00:00
|
|
|
frame=ValueRange(start=None, end=None),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
).order_by("department", "hire_date", "name")
|
|
|
|
self.assertIn(
|
|
|
|
"RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING", str(qs.query)
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
2018-07-25 23:45:32 +00:00
|
|
|
("Jones", "Accounting", 45000, datetime.date(2005, 11, 1), 165000),
|
|
|
|
("Jenson", "Accounting", 45000, datetime.date(2008, 4, 1), 165000),
|
|
|
|
("Williams", "Accounting", 37000, datetime.date(2009, 6, 1), 165000),
|
|
|
|
("Adams", "Accounting", 50000, datetime.date(2013, 7, 1), 130000),
|
|
|
|
("Wilkinson", "IT", 60000, datetime.date(2011, 3, 1), 194000),
|
|
|
|
("Moore", "IT", 34000, datetime.date(2013, 8, 1), 194000),
|
|
|
|
("Miller", "Management", 100000, datetime.date(2005, 6, 1), 194000),
|
|
|
|
("Johnson", "Management", 80000, datetime.date(2005, 7, 1), 130000),
|
|
|
|
("Smith", "Marketing", 38000, datetime.date(2009, 10, 1), 165000),
|
|
|
|
("Johnson", "Marketing", 40000, datetime.date(2012, 3, 1), 148000),
|
|
|
|
("Smith", "Sales", 55000, datetime.date(2007, 6, 1), 148000),
|
|
|
|
("Brown", "Sales", 53000, datetime.date(2009, 9, 1), 148000),
|
2017-09-18 13:42:29 +00:00
|
|
|
],
|
|
|
|
transform=lambda row: (
|
|
|
|
row.name,
|
|
|
|
row.department,
|
|
|
|
row.salary,
|
|
|
|
row.hire_date,
|
|
|
|
row.sum,
|
2022-02-03 19:24:19 +00:00
|
|
|
),
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
|
|
|
|
2018-12-27 19:21:57 +00:00
|
|
|
def test_subquery_row_range_rank(self):
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
highest_avg_salary_date=Subquery(
|
|
|
|
Employee.objects.filter(
|
|
|
|
department=OuterRef("department"),
|
|
|
|
)
|
|
|
|
.annotate(
|
|
|
|
avg_salary=Window(
|
|
|
|
expression=Avg("salary"),
|
|
|
|
order_by=[F("hire_date").asc()],
|
|
|
|
frame=RowRange(start=-1, end=1),
|
|
|
|
),
|
2019-01-03 19:18:45 +00:00
|
|
|
)
|
|
|
|
.order_by("-avg_salary", "hire_date")
|
|
|
|
.values("hire_date")[:1],
|
2022-02-03 19:24:19 +00:00
|
|
|
),
|
2019-01-03 19:18:45 +00:00
|
|
|
).order_by("department", "name")
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2022-02-03 19:24:19 +00:00
|
|
|
qs,
|
|
|
|
[
|
2018-12-27 19:21:57 +00:00
|
|
|
("Adams", "Accounting", datetime.date(2005, 11, 1)),
|
|
|
|
("Jenson", "Accounting", datetime.date(2005, 11, 1)),
|
|
|
|
("Jones", "Accounting", datetime.date(2005, 11, 1)),
|
|
|
|
("Williams", "Accounting", datetime.date(2005, 11, 1)),
|
2019-01-03 19:18:45 +00:00
|
|
|
("Moore", "IT", datetime.date(2011, 3, 1)),
|
|
|
|
("Wilkinson", "IT", datetime.date(2011, 3, 1)),
|
|
|
|
("Johnson", "Management", datetime.date(2005, 6, 1)),
|
|
|
|
("Miller", "Management", datetime.date(2005, 6, 1)),
|
|
|
|
("Johnson", "Marketing", datetime.date(2009, 10, 1)),
|
|
|
|
("Smith", "Marketing", datetime.date(2009, 10, 1)),
|
|
|
|
("Brown", "Sales", datetime.date(2007, 6, 1)),
|
|
|
|
("Smith", "Sales", datetime.date(2007, 6, 1)),
|
2022-02-03 19:24:19 +00:00
|
|
|
],
|
2017-09-18 13:42:29 +00:00
|
|
|
transform=lambda row: (
|
|
|
|
row.name,
|
|
|
|
row.department,
|
2018-12-27 19:21:57 +00:00
|
|
|
row.highest_avg_salary_date,
|
|
|
|
),
|
|
|
|
)
|
|
|
|
|
2017-09-18 13:42:29 +00:00
|
|
|
def test_row_range_rank(self):
|
|
|
|
"""
|
|
|
|
A query with ROWS BETWEEN UNBOUNDED PRECEDING AND 3 FOLLOWING.
|
|
|
|
The resulting sum is the sum of the three next (if they exist) and all
|
|
|
|
previous rows according to the ordering clause.
|
|
|
|
"""
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
sum=Window(
|
|
|
|
expression=Sum("salary"),
|
|
|
|
order_by=[F("hire_date").asc(), F("name").desc()],
|
|
|
|
frame=RowRange(start=None, end=3),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
).order_by("sum", "hire_date")
|
|
|
|
self.assertIn("ROWS BETWEEN UNBOUNDED PRECEDING AND 3 FOLLOWING", str(qs.query))
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2017-09-18 13:42:29 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Miller", 100000, "Management", datetime.date(2005, 6, 1), 280000),
|
|
|
|
("Johnson", 80000, "Management", datetime.date(2005, 7, 1), 325000),
|
|
|
|
("Jones", 45000, "Accounting", datetime.date(2005, 11, 1), 362000),
|
|
|
|
("Smith", 55000, "Sales", datetime.date(2007, 6, 1), 415000),
|
|
|
|
("Jenson", 45000, "Accounting", datetime.date(2008, 4, 1), 453000),
|
|
|
|
("Williams", 37000, "Accounting", datetime.date(2009, 6, 1), 513000),
|
|
|
|
("Brown", 53000, "Sales", datetime.date(2009, 9, 1), 553000),
|
|
|
|
("Smith", 38000, "Marketing", datetime.date(2009, 10, 1), 603000),
|
|
|
|
("Wilkinson", 60000, "IT", datetime.date(2011, 3, 1), 637000),
|
|
|
|
("Johnson", 40000, "Marketing", datetime.date(2012, 3, 1), 637000),
|
|
|
|
("Adams", 50000, "Accounting", datetime.date(2013, 7, 1), 637000),
|
|
|
|
("Moore", 34000, "IT", datetime.date(2013, 8, 1), 637000),
|
|
|
|
],
|
|
|
|
transform=lambda row: (
|
|
|
|
row.name,
|
|
|
|
row.salary,
|
|
|
|
row.department,
|
|
|
|
row.hire_date,
|
|
|
|
row.sum,
|
2022-02-03 19:24:19 +00:00
|
|
|
),
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
2022-02-03 19:24:19 +00:00
|
|
|
|
2017-09-18 13:42:29 +00:00
|
|
|
@skipUnlessDBFeature("can_distinct_on_fields")
|
|
|
|
def test_distinct_window_function(self):
|
|
|
|
"""
|
|
|
|
Window functions are not aggregates, and hence a query to filter out
|
|
|
|
duplicates may be useful.
|
|
|
|
"""
|
|
|
|
qs = (
|
|
|
|
Employee.objects.annotate(
|
|
|
|
sum=Window(
|
|
|
|
expression=Sum("salary"),
|
|
|
|
partition_by=ExtractYear("hire_date"),
|
|
|
|
order_by=ExtractYear("hire_date"),
|
|
|
|
),
|
|
|
|
year=ExtractYear("hire_date"),
|
|
|
|
)
|
2022-08-10 12:22:01 +00:00
|
|
|
.filter(sum__gte=45000)
|
2017-09-18 13:42:29 +00:00
|
|
|
.values("year", "sum")
|
|
|
|
.distinct("year")
|
|
|
|
.order_by("year")
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
results = [
|
|
|
|
{"year": 2005, "sum": 225000},
|
|
|
|
{"year": 2007, "sum": 55000},
|
|
|
|
{"year": 2008, "sum": 45000},
|
|
|
|
{"year": 2009, "sum": 128000},
|
|
|
|
{"year": 2011, "sum": 60000},
|
|
|
|
{"year": 2013, "sum": 84000},
|
|
|
|
]
|
|
|
|
for idx, val in zip(range(len(results)), results):
|
|
|
|
with self.subTest(result=val):
|
|
|
|
self.assertEqual(qs[idx], val)
|
|
|
|
|
|
|
|
def test_fail_update(self):
|
|
|
|
"""Window expressions can't be used in an UPDATE statement."""
|
2019-02-14 23:58:08 +00:00
|
|
|
msg = (
|
|
|
|
"Window expressions are not allowed in this query (salary=<Window: "
|
|
|
|
"Max(Col(expressions_window_employee, expressions_window.Employee.salary)) "
|
|
|
|
"OVER (PARTITION BY Col(expressions_window_employee, "
|
|
|
|
"expressions_window.Employee.department))>)."
|
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
with self.assertRaisesMessage(FieldError, msg):
|
|
|
|
Employee.objects.filter(department="Management").update(
|
|
|
|
salary=Window(expression=Max("salary"), partition_by="department"),
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_fail_insert(self):
|
|
|
|
"""Window expressions can't be used in an INSERT statement."""
|
2019-02-14 23:58:08 +00:00
|
|
|
msg = (
|
|
|
|
"Window expressions are not allowed in this query (salary=<Window: "
|
|
|
|
"Sum(Value(10000), order_by=OrderBy(F(pk), descending=False)) OVER ()"
|
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
with self.assertRaisesMessage(FieldError, msg):
|
|
|
|
Employee.objects.create(
|
|
|
|
name="Jameson",
|
|
|
|
department="Management",
|
|
|
|
hire_date=datetime.date(2007, 7, 1),
|
|
|
|
salary=Window(expression=Sum(Value(10000), order_by=F("pk").asc())),
|
|
|
|
)
|
|
|
|
|
2018-03-01 07:55:05 +00:00
|
|
|
def test_window_expression_within_subquery(self):
|
|
|
|
subquery_qs = Employee.objects.annotate(
|
|
|
|
highest=Window(
|
|
|
|
FirstValue("id"),
|
|
|
|
partition_by=F("department"),
|
|
|
|
order_by=F("salary").desc(),
|
|
|
|
)
|
|
|
|
).values("highest")
|
|
|
|
highest_salary = Employee.objects.filter(pk__in=subquery_qs)
|
2019-11-18 11:32:37 +00:00
|
|
|
self.assertCountEqual(
|
|
|
|
highest_salary.values("department", "salary"),
|
|
|
|
[
|
2018-03-01 07:55:05 +00:00
|
|
|
{"department": "Accounting", "salary": 50000},
|
|
|
|
{"department": "Sales", "salary": 55000},
|
|
|
|
{"department": "Marketing", "salary": 40000},
|
|
|
|
{"department": "IT", "salary": 60000},
|
|
|
|
{"department": "Management", "salary": 100000},
|
|
|
|
],
|
|
|
|
)
|
2022-02-03 19:24:19 +00:00
|
|
|
|
2020-10-14 10:21:25 +00:00
|
|
|
@skipUnlessDBFeature("supports_json_field")
|
|
|
|
def test_key_transform(self):
|
|
|
|
Detail.objects.bulk_create(
|
|
|
|
[
|
|
|
|
Detail(value={"department": "IT", "name": "Smith", "salary": 37000}),
|
|
|
|
Detail(value={"department": "IT", "name": "Nowak", "salary": 32000}),
|
|
|
|
Detail(value={"department": "HR", "name": "Brown", "salary": 50000}),
|
|
|
|
Detail(value={"department": "HR", "name": "Smith", "salary": 55000}),
|
|
|
|
Detail(value={"department": "PR", "name": "Moore", "salary": 90000}),
|
|
|
|
]
|
|
|
|
)
|
2020-11-15 22:43:47 +00:00
|
|
|
tests = [
|
|
|
|
(KeyTransform("department", "value"), KeyTransform("name", "value")),
|
|
|
|
(F("value__department"), F("value__name")),
|
|
|
|
]
|
|
|
|
for partition_by, order_by in tests:
|
|
|
|
with self.subTest(partition_by=partition_by, order_by=order_by):
|
|
|
|
qs = Detail.objects.annotate(
|
|
|
|
department_sum=Window(
|
|
|
|
expression=Sum(
|
|
|
|
Cast(
|
|
|
|
KeyTextTransform("salary", "value"),
|
|
|
|
output_field=IntegerField(),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2020-11-15 22:43:47 +00:00
|
|
|
),
|
|
|
|
partition_by=[partition_by],
|
|
|
|
order_by=[order_by],
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2020-11-15 22:43:47 +00:00
|
|
|
).order_by("value__department", "department_sum")
|
2022-09-24 10:29:58 +00:00
|
|
|
self.assertQuerySetEqual(
|
2020-11-15 22:43:47 +00:00
|
|
|
qs,
|
|
|
|
[
|
|
|
|
("Brown", "HR", 50000, 50000),
|
|
|
|
("Smith", "HR", 55000, 105000),
|
|
|
|
("Nowak", "IT", 32000, 32000),
|
|
|
|
("Smith", "IT", 37000, 69000),
|
|
|
|
("Moore", "PR", 90000, 90000),
|
|
|
|
],
|
|
|
|
lambda entry: (
|
|
|
|
entry.value["name"],
|
|
|
|
entry.value["department"],
|
|
|
|
entry.value["salary"],
|
|
|
|
entry.department_sum,
|
2022-02-03 19:24:19 +00:00
|
|
|
),
|
2020-11-15 22:43:47 +00:00
|
|
|
)
|
2020-10-14 10:21:25 +00:00
|
|
|
|
2017-09-18 13:42:29 +00:00
|
|
|
def test_invalid_start_value_range(self):
|
|
|
|
msg = "start argument must be a negative integer, zero, or None, but got '3'."
|
|
|
|
with self.assertRaisesMessage(ValueError, msg):
|
|
|
|
list(
|
|
|
|
Employee.objects.annotate(
|
|
|
|
test=Window(
|
|
|
|
expression=Sum("salary"),
|
|
|
|
order_by=F("hire_date").asc(),
|
|
|
|
frame=ValueRange(start=3),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
|
|
|
|
def test_invalid_end_value_range(self):
|
|
|
|
msg = "end argument must be a positive integer, zero, or None, but got '-3'."
|
|
|
|
with self.assertRaisesMessage(ValueError, msg):
|
|
|
|
list(
|
|
|
|
Employee.objects.annotate(
|
|
|
|
test=Window(
|
|
|
|
expression=Sum("salary"),
|
|
|
|
order_by=F("hire_date").asc(),
|
|
|
|
frame=ValueRange(end=-3),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
|
|
|
|
def test_invalid_type_end_value_range(self):
|
|
|
|
msg = "end argument must be a positive integer, zero, or None, but got 'a'."
|
|
|
|
with self.assertRaisesMessage(ValueError, msg):
|
|
|
|
list(
|
|
|
|
Employee.objects.annotate(
|
|
|
|
test=Window(
|
|
|
|
expression=Sum("salary"),
|
|
|
|
order_by=F("hire_date").asc(),
|
|
|
|
frame=ValueRange(end="a"),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
|
|
|
|
def test_invalid_type_start_value_range(self):
|
|
|
|
msg = "start argument must be a negative integer, zero, or None, but got 'a'."
|
|
|
|
with self.assertRaisesMessage(ValueError, msg):
|
|
|
|
list(
|
|
|
|
Employee.objects.annotate(
|
|
|
|
test=Window(
|
|
|
|
expression=Sum("salary"),
|
|
|
|
frame=ValueRange(start="a"),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
|
|
|
|
def test_invalid_type_end_row_range(self):
|
|
|
|
msg = "end argument must be a positive integer, zero, or None, but got 'a'."
|
|
|
|
with self.assertRaisesMessage(ValueError, msg):
|
|
|
|
list(
|
|
|
|
Employee.objects.annotate(
|
|
|
|
test=Window(
|
|
|
|
expression=Sum("salary"),
|
|
|
|
frame=RowRange(end="a"),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
|
2020-01-19 23:30:54 +00:00
|
|
|
@skipUnlessDBFeature("only_supports_unbounded_with_preceding_and_following")
|
|
|
|
def test_unsupported_range_frame_start(self):
|
|
|
|
msg = (
|
|
|
|
"%s only supports UNBOUNDED together with PRECEDING and FOLLOWING."
|
|
|
|
% connection.display_name
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
with self.assertRaisesMessage(NotSupportedError, msg):
|
|
|
|
list(
|
|
|
|
Employee.objects.annotate(
|
|
|
|
test=Window(
|
|
|
|
expression=Sum("salary"),
|
|
|
|
order_by=F("hire_date").asc(),
|
|
|
|
frame=ValueRange(start=-1),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
|
2020-01-19 23:30:54 +00:00
|
|
|
@skipUnlessDBFeature("only_supports_unbounded_with_preceding_and_following")
|
|
|
|
def test_unsupported_range_frame_end(self):
|
|
|
|
msg = (
|
|
|
|
"%s only supports UNBOUNDED together with PRECEDING and FOLLOWING."
|
|
|
|
% connection.display_name
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
with self.assertRaisesMessage(NotSupportedError, msg):
|
|
|
|
list(
|
|
|
|
Employee.objects.annotate(
|
|
|
|
test=Window(
|
|
|
|
expression=Sum("salary"),
|
|
|
|
order_by=F("hire_date").asc(),
|
|
|
|
frame=ValueRange(end=1),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
|
|
|
|
def test_invalid_type_start_row_range(self):
|
|
|
|
msg = "start argument must be a negative integer, zero, or None, but got 'a'."
|
|
|
|
with self.assertRaisesMessage(ValueError, msg):
|
|
|
|
list(
|
|
|
|
Employee.objects.annotate(
|
|
|
|
test=Window(
|
|
|
|
expression=Sum("salary"),
|
|
|
|
order_by=F("hire_date").asc(),
|
|
|
|
frame=RowRange(start="a"),
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
2022-02-03 19:24:19 +00:00
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
|
2022-08-29 07:14:56 +00:00
|
|
|
def test_invalid_filter(self):
|
|
|
|
msg = (
|
|
|
|
"Heterogeneous disjunctive predicates against window functions are not "
|
|
|
|
"implemented when performing conditional aggregation."
|
|
|
|
)
|
|
|
|
qs = Employee.objects.annotate(
|
|
|
|
window=Window(Rank()),
|
|
|
|
past_dept_cnt=Count("past_departments"),
|
|
|
|
)
|
|
|
|
with self.assertRaisesMessage(NotImplementedError, msg):
|
|
|
|
list(qs.filter(Q(window=1) | Q(department="Accounting")))
|
|
|
|
with self.assertRaisesMessage(NotImplementedError, msg):
|
|
|
|
list(qs.exclude(window=1, department="Accounting"))
|
|
|
|
|
2017-09-18 13:42:29 +00:00
|
|
|
|
2019-05-03 11:49:02 +00:00
|
|
|
class WindowUnsupportedTests(TestCase):
|
|
|
|
def test_unsupported_backend(self):
|
|
|
|
msg = "This backend does not support window expressions."
|
|
|
|
with mock.patch.object(connection.features, "supports_over_clause", False):
|
|
|
|
with self.assertRaisesMessage(NotSupportedError, msg):
|
|
|
|
Employee.objects.annotate(
|
|
|
|
dense_rank=Window(expression=DenseRank())
|
|
|
|
).get()
|
|
|
|
|
|
|
|
|
2017-09-18 13:42:29 +00:00
|
|
|
class NonQueryWindowTests(SimpleTestCase):
|
|
|
|
def test_window_repr(self):
|
|
|
|
self.assertEqual(
|
|
|
|
repr(Window(expression=Sum("salary"), partition_by="department")),
|
|
|
|
"<Window: Sum(F(salary)) OVER (PARTITION BY F(department))>",
|
|
|
|
)
|
|
|
|
self.assertEqual(
|
|
|
|
repr(Window(expression=Avg("salary"), order_by=F("department").asc())),
|
2021-11-23 05:39:04 +00:00
|
|
|
"<Window: Avg(F(salary)) OVER (OrderByList(OrderBy(F(department), "
|
|
|
|
"descending=False)))>",
|
2017-09-18 13:42:29 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def test_window_frame_repr(self):
|
|
|
|
self.assertEqual(
|
|
|
|
repr(RowRange(start=-1)),
|
|
|
|
"<RowRange: ROWS BETWEEN 1 PRECEDING AND UNBOUNDED FOLLOWING>",
|
|
|
|
)
|
|
|
|
self.assertEqual(
|
|
|
|
repr(ValueRange(start=None, end=1)),
|
|
|
|
"<ValueRange: RANGE BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING>",
|
|
|
|
)
|
|
|
|
self.assertEqual(
|
|
|
|
repr(ValueRange(start=0, end=0)),
|
|
|
|
"<ValueRange: RANGE BETWEEN CURRENT ROW AND CURRENT ROW>",
|
|
|
|
)
|
|
|
|
self.assertEqual(
|
|
|
|
repr(RowRange(start=0, end=0)),
|
|
|
|
"<RowRange: ROWS BETWEEN CURRENT ROW AND CURRENT ROW>",
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_empty_group_by_cols(self):
|
|
|
|
window = Window(expression=Sum("pk"))
|
|
|
|
self.assertEqual(window.get_group_by_cols(), [])
|
|
|
|
self.assertFalse(window.contains_aggregate)
|
|
|
|
|
|
|
|
def test_frame_empty_group_by_cols(self):
|
|
|
|
frame = WindowFrame()
|
|
|
|
self.assertEqual(frame.get_group_by_cols(), [])
|
|
|
|
|
|
|
|
def test_frame_window_frame_notimplemented(self):
|
|
|
|
frame = WindowFrame()
|
|
|
|
msg = "Subclasses must implement window_frame_start_end()."
|
|
|
|
with self.assertRaisesMessage(NotImplementedError, msg):
|
|
|
|
frame.window_frame_start_end(None, None, None)
|
|
|
|
|
|
|
|
def test_invalid_order_by(self):
|
2021-11-23 05:39:04 +00:00
|
|
|
msg = (
|
|
|
|
"Window.order_by must be either a string reference to a field, an "
|
|
|
|
"expression, or a list or tuple of them."
|
|
|
|
)
|
2017-09-18 13:42:29 +00:00
|
|
|
with self.assertRaisesMessage(ValueError, msg):
|
2021-11-23 05:39:04 +00:00
|
|
|
Window(expression=Sum("power"), order_by={"-horse"})
|
2017-09-18 13:42:29 +00:00
|
|
|
|
|
|
|
def test_invalid_source_expression(self):
|
|
|
|
msg = "Expression 'Upper' isn't compatible with OVER clauses."
|
|
|
|
with self.assertRaisesMessage(ValueError, msg):
|
|
|
|
Window(expression=Upper("name"))
|